On the equivalence of SOR, SSOR and USSOR as applied
to o;-ordered systems of linear equations

By M. S. Lynn*

The method of symmetric successive over-relaxation (SSOR) was proposed by Sheldon (1955).
It has been analyzed by Habetler and Wachspress (1961) and extended to the method of
unsymmetric successive over-relaxation (USSOR) by D’Sylva and Miles (1964). The latter
showed that for suitable choice of relaxation parameters asymptotic rates of convergence
precisely half of those of the familiar method of successive over-relaxation (SOR) may be
obtained when the method is applied to o,-ordered systems of linear equations possessing
Property A. The present paper shows that this factor is in fact spurious, and that, under the
latter hypotheses, the methods of SOR, SSOR and USSOR are identical when applied to
o,-ordered systems of equations. It is hence shown that Chebyshev accelerated SSR (SSOR
with unity relaxation parameter) becomes, in this case, identical with the Chebyshev accelerated
Gauss-Seidel method (Varga (1957)). The theoretical results of D’Sylva and Miles and of this
paper and the vastly different behaviours of the o,- and o,-orderings are emphasized by means

of numerical examples.

1. Suppose we wish to solve the system of equations
Ax =, (1.1)

where we assume that A4 is a symmetric, positive definite,
N x N matrix and x,f are N X 1 vectors. We shall
assume that 4 has Property A and is o;-ordered
(Young, 1954) so that it has the form

D, —R
4= [—RT DJ’

where R is an m X n sub-matrix and D,, D, are m X m
and n X n diagonal sub-matrices, respectively.

It should be remarked at this juncture, that if 4 has
block Property A and is block o,-ordered (Arms, Gates,
Zondek (1956)), then all our subsequent remarks as
applied to point relaxation methods will be equally valid
for the associated block relaxation methods (block
successive over-relaxation, block symmetric successive
over-relaxation, and so forth). For in the sequel, it
can be simply assumed for this purpose that D, and D,
are block diagonal matrices which will not alter the
argument.

Now let D, L, U be the partitioned matrices defined by

D, 0 0 0 0 R
A R

Then the method of successive over-relaxation (SOR)
is defined, as usual, by the sequence of vectors {y®}
where
Dy*+1D = (Ly*+D + Up® 4 f)
+ (1 — w)Dy® (1.4)

(1.2)

k=0,1,2,...

where y(©@ js arbitrary and w (0 < w < 2) is the relaxation
parameter.
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The method of unsymmetric successive over-relaxation
(USSOR) proposed by D’Sylva and Miles (1963) is
defined by the sequence of vectors {x©}, where

Dxk+1) — wl(Lx(2k+l) + Ux(Zk) +f)

+ (1 — w)Dx, (1.5)
Dx+2 = ,(Uxk+2)  Lx(Ck+1) | f)
+ (1 — wy)Dx D, (1.6)

k=0,1,2,...

where x(@ is arbitrary and w;, w, are (possibly) distinct
relaxation parameters. When w; = w, the method
becomes the symmetric successive over-relaxation (SSOR)
method, without Chebyshev acceleration, proposed by
Sheldon (1955). It has been shown (Habetler and
Wachspress (1961)) that if Chebyshev acceleration is
applied to SSOR the resultant method has a rate of
convergence which, except under favourable circum-
stances, is usually far slower than the rate of convergence
of optimized SOR with

w=w,=2/[1 ++1—p)] (L.7)

where u denotes the spectral radius of B = D~(L + U).
It was also shown by D’Sylva and Miles (1963) that if
w;, w, are chosen such that

(1.8)

then USSOR has an optimized asymptotic convergence
rate which is precisely half that of SOR, the factor }
appearing since one complete iteration of USSOR
involves exactly twice as much computation as one
iteration of SOR.

The purpose of this paper is to show that, in the case
where A is o,-ordered, this factor of 1 is spurious,
since the computation may be organized such that one

wyy (say) = | + wy; — wiw; = wy,
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complete sweep of USSOR involves precisely the same
amount of arithmetic as one sweep of SOR. More
surprising, however, is the fact that if one organizes the
computation in this manner, USSOR and SOR become
precisely identical methods, with w = w;, = 0, + w,
— wyw, (hence providing a separate justification for
(1.8)). As an immediate corollary, it follows that
Chebyshev accelerated SSR (w; = w, = w;, = 1)*
becomes precisely identical with the Chebyshev accelerated
Gauss-Seidel method (Varga (1957), Sheldon (1959))
with a suitable choice of an initial vector.

Using Theorem 2 of Varga (1957), it follows that
Chebyshev accelerated SSR, even with the economical
computational scheme, can converge no faster than
optimized SOR, when the o,-ordering is employed. It
may seem as if this result is at variance with the results
of Sheldon (1955) and of Habetler and Wachspress (1961)
who indicated that rates of convergence faster than those
obtained by optimized SOR may be achieved under
certain conditions. It now appears that certainly one
of these conditions is that an ordering other than the
o,-ordering be employed; we shall consider this point
further below.

2. Let, in (1.5) and (1.6),

x(p) f,
» = |71 = |7 =
X [xgp)} > f [/2] P O, 19 2, LIRS

where x{?, f are m X 1 vectors, and x{?, f, are nx1
vectors. Then from (1.3), (1.5) and (1.6), we have for
k=0,1,2,...,

D xPHD = w (RxP + fi) + (1 — w)Dx{P, 2.1
sz(22k+l) = wl(RTx?kH) +£)+0— wl)D2x§2k), 2.2)

D2xg2k+2) — wZ(RTx(12k+l) +f2) + (1 _ wz)D2x§2k+1),

2.3)
D xPHD = wy(RxPE+D + f1) 4 (1 — wy)DxPk+D,
(2.9)
Let
w1 = W) + W, — Wwy; W = whlo;
wy = wyylw,y. (2.5)

From (2.2) and (2.3)
Dyx Gk = (wyf w)DH(xFKHD — (1 — w)xP)
+ (1 — wy))Dxfr*Y,
so that
D2x§2k+2’ — wl'sz(z?.k—H) + (l . w{)sz?k)
(k=0,1,2,..). (2.6)
Similarly, from (2.1) and (2.4) (with k replaced by
k — 1 in the latter),
D x#*+D) = ;D x4 (1 — wy)Dx~D
k=12,..). 27

* Without Chebyshev acceleration, SSR is the same as the
“double-sweep” method originally proposed by Aitken (1950).
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Hence from (2.2) and (2.6)
DoxFEHD = (R + f5) + (1 — wy)D,yx,@,
k=0,1,2,...), (2.8

whilst from (2.4) and (2.7) (with k — 1 replacing k in
the former),

D x*HD — w(RxZP + fi) + (1 — wy)Dyx kD,
k=12,..). (9
Now let
x{2k=D
yo = [x(Zk) } (k=0,1,2,...).
2
Then from (1.3), (2.8) and (2.9),
Dy D = w (Lt 4 Up® 4 £) + (1 — ) Dy®
(k=0,1,2,..). (2.11)
which is precisely the sequence of vectors we should

obtain if we were to apply the method of SOR with
starting vector

(2.10)

(2.12)

and relaxation factor w = w,,.

It is thus apparent that, in the method of USSOR and
hence SSOR, it is only necessary to calculate the sequences
of vectors {x{***1} and {x??¥} from (2.8) and (2.9) which
converge to x; and x,, respectively, where

)

x = ’

X2

and that, in so economizing the computation, the
method is identical with SOR.

It may readily be shown that, if w,, 5% 1, x;(V and x,®
may be chosen arbitrarily and independently by appro-
priately choosing the arbitrary starting vectors x{¥
and x{. On the other hand, if w;, =1, so that
w; = w, = 1, then x{" may be chosen arbitrarily, whilst

@ = D [RTHD 4 £i].

This is exactly the situation with the Gauss—Seidel itera-
tion scheme (SOR with w = 1), and thus we see that
Chebyshev accelerated SSR is identical with Chebyshev
accelerated Gauss—Seidel.

The author concurs with the results of D’Sylva and
Miles (1963) who showed that o,-ordered SSOR is
optimized when w; = w, = 1. Forwhen w; = w, = @
(say), then w;, = &2 — @) < 1; thus from (2.11)
SSOR is equivalent to SOR with w = &2 — @) < 1,
and is thus optimized when &(2 — @) = 1, and hence
when w; = w, = 1 which proves our assertion.

This is perhaps surprising, for it is known that for
the o,- or normal ordering (Young (1954)) it is possible
under favourable circumstances for the optimal value
of w to be greater than unity (see Sheldon (1955),
Habetler and Wachspress (1961) or the numerical
experiments of Evans and Forrington (1963)) and that
Chebyshev accelerated SSOR using this optimal value
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of w yields convergence rates superior to optimized
SOR. Thus it appears that for SSOR, asymptotic rates
of convergence may be greatly affected by different
consistent orderings, which is unlike the situation for
SOR.

To summarize the results thus far:

Theorem 1. If A in (1.1) has (block) Property A and is
(block) oy-ordered, then (block) USSOR and (block)
SOR are identical with

W= W, = W) + Wy — W;W,.

If wy = wy, = @& (say), then (block) SSOR and (block)
SOR are identical with

w=a6Q2—a) <L

If @ =1, so that (block) SSOR becomes (block) SSR,
the latter is identical with (block) Gauss—Seidel. Hence
Chebyshev accelerated SSR is identical with the Chebyshev
accelerated Gauss—Seidel method.

Now Varga ((1957), Theorem 2) proved that optimized
SOR converges at least as fast as Chebyshev-accelerated
Gauss-Seidel. Thus, using Theorem 1, we may state:

Theorem 2. If A is symmetric positive-definite, has
Property A and is o,- ordered, then optimized SOR con-
verges at least as fast as Chebyshev-accelerated SSR and
at the same rate as optimized USSOR when the economical
scheme of (2.7) and (2.8) is employed. If the usual
Sformulation of (1.5) and (1.6) is utilized, then optimized
SOR converges at least twice as fast as the other two
methods.

It might be remarked that the requirement that 4 be
symmetric, positive-definite may be replaced by the
weaker requirement that it has the form

D, K
4= [M DJ

where D,, D, are (block) diagonal, and that the matrix
0 D 'K
2=[oeme 0 )
D;'M 0
has real eigenvalues and spectral radius less than unity.

3. Numerical example

We should thus expect that the behaviour of the SSOR
method, with or without Chebyshev acceleration, is
different according to whether it is applied to o,- or
o,-ordered systems of equations (see Young (1954):
for example, in solving the two-dimensional Dirichlet
problem over the rectangle by finite-difference methods
using a five-point star, the o,-ordering may be obtained
(say) by sweeping through the mesh consecutively row
by row, proceeding from left to right along each row.
The o,-ordering, on the other hand, can be obtained by
first processing the equations belonging to the (i, j)th-
points such that (i + j) is even, and then processing those
equations belonging to points such that (i + j) is odd.)

This difference is indeed borne out by a simple
numerical experiment, where the solution of the set of
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Table 1.
(See text for explanation)

Comparison of spectral radii

n 10 20

) A(w) | A(w) A(w) Al(w) L(w) | Nw)

0-9824
0-9624
0-9424
0-9267
0-9206
0-9267
0-9424
0-9624
0-9824

0-9910
0-9800
0-9663
0-9489
0-9268
0-8997
0-8716
0-8616
0-9060

0-9910
0-9799
0-9679
0-9469
0-9206
0-8803
0-8060
0-6000
0-8000

0-9951
0-9896
0-9839
0-9795
0-9778
0-9795
0-9839
0-9896
0-9951

0-9974
0-9943
0-9899
0-9853
0-9780
0-9685
0-9545
0-9357
0-9293

0-9976
0-9944
0-9904
0-9852
0-9788
0-9667
0-9477
0-9057
0-8000

— ek e e e O OO O
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équations derived from a one-dimensional Dirichlet
problem is obtained. In Table 1 we give the spectral
radii of the iteration matrices of order 10 x 10 and
20 x 20 as follows:

(i) A(w) = the spectral radius of the iteration matrix
of SSOR, o-ordering.

(ii) Ay(w) = the square root (twice as much com-
putation per iteration) of the spectral radius of
the iteration matrix of SSOR, o,-ordering.

(iii) AM(w) = the spectral radius of the SOR iteration
matrix.

It will be seen that A;(w) behaves according to the
predicted theory with a minimum at w = 1, whereas
the smallest value of A,(w) is attained for a value of w
considerably greater than unity.

It is curiously interesting to calculate the asymptotic
rates of convergence of Chebyshev accelerated SSOR.
These are given in Table 2 together with the asymptotic
rate of convergence for SOR. According to Theorem 2,
the latter should be the same as the rate of convergence
for Chebyshev accelerated SSOR, o,-ordering, with
w=1. The rate of convergence for Chebyshev
accelerated SSOR, o,-ordering, using the optimal value,

Table 2. Optimized rates of convergence

METHOD n=10 n =20
Chebyshev 0-580 0-301
accelerated SSOR,
o,-ordering (w=1)

Chebyshev 0-564 0-399
accelerated SSOR, {w' = 1-57 {w’ =175
o,-ordering (w=w") { Ay(w)=0-8597 |\ \(w')=0-9255
Optimized SOR 0-580 0-301
(w = wp) (wp, = 1-5603) (wp, = 1-7406)
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Table 3. Ratios (0) of asymptotic rates of convergence o7 At
of Chebyshev accelerated SSOR (o,) to optimized SOR

O 6

6 THEORETICAL .
.5l —— SSOR: Oj- ordering
" FXPERIMENTAL (SHELDON) o® -& SSOR O‘lg- ordering
-% SOR
o4l ® Optimal Cheb accelerated SSOR : Oy~ ordering
10 0-97 0-94 A Optimal Cheb. accelerated SSOR O3 - ordering

@ Optimal SOR with w}

20 1-33 1-29
w’, which minimizes A,(w) is given by o b
Ry = — }log[a + v(a? — 1)], (3.1
where °
o« = 2/[A ()] — 1 (-2 Fig. 1.—Asymptotic rates of convergence: n = 10

(see Sheldon (1955); Varga (1959)); we note that the
spectral radius, [Ay(w’)]?, appears in (3.2), and not its
square root; the fact that twice as much computation is

required per iteration is accounted for by the factor 1 o 17331332.‘".' *
in (3.1).
We might remark that the ratio, 6, of the asymptotic
rates of convergence of the Chebyshev accelerated 0.3 .
SSOR (o,) method to optimized SOR is in keeping with
the theorétical result of Sheldon ((1955), p. 109, ~  SSOR: Gj-ordering
equation (63)) which states that o SSoR Gaordenna %
1 n o ZL [ ] Opt.imol Cheb.acceleroted SSOR o’,-—ordcr-inq
0= 5" 63 3 oy o st 08 s
This is illustrated in Table 3. @ is less than unity for
n =10 and greater than unity for n = 20. For this
particular problem, § — oo as n— oo, and accelerated
SSOR is clearly superior.
The asymptotic rates of convergence are illustrated

graphically in Figs. 1 and 2.

The author would like to acknowledge with gratitude
Dr. D. W. Martin of the National Physical Laboratory
for several stimulating conversations and helpful

Fig. 2.—Asymptotic rates of convergence: n = 20

suggestions.

The above work was carried out as part of the research is published by permission of the Director of the
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