The iterative solution of non-linear ordinary differential equations

in Chebyshev series
By H. J. Norton*

The Newton iteration formula is applied to the solution of non-linear ordinary differential
equations. For the first-order equation y' = f(x, y) successive applications of Newton’s rule

yield the formula y; = f(x, yi—1) + (¥i — yi—0 £ (x, yi-1)-

All functions which occur in the

formula are represented by their Chebyshev series, and the analytic operations involved are

performed by arithmetic operations on the coefficients of these series.

This iterative method is

of particular value when solving boundary-value problems since the more usual step-by-step

methods are less powerful in these cases.

ness of the method.

1. Introduction

There has been much recent work on the application
of Chebyshev series to the numerical solution of prac-
tical problems. Chebyshev series have been applied to
quadrature (Clenshaw and Curtis, 1960), the solution of
integral equations (Elliott, 1960 and 1963), ordinary
linear differential equations (Lanczos, 1938, 1952 and
1957; Clenshaw, 1957) and parabolic partial differential
equations (Elliott, 1961). Series methods for the
solution of differential equations have particular
advantages when applied to boundary-value problems,
since the zype of boundary condition is irrelevant to the
numerical procedure.

In a recent paper (Clenshaw and Norton, 1963) a
method was described for the solution of non-linear
ordinary differential equations in Chebyshev series.
Basically, this method, hereafter referred to as Method 1,
consists in the application of Chebyshev series to Picard
iteration. Non-linear operations on Chebyshev series
are avoided; non-linear terms occurring in the equations
are evaluated at the Chebyshev points (x, = cos rm/N,
r=0,1,..., N, for the range —1 < x< + 1), and
from these their Chebyshev series are computed.

For some boundary-value problems, however, Method
1 is divergent. In this paper a procedure, based on
Newton iteration, is described (Section 3) which secures
convergence for a larger class of problems and also
increases the rate of convergence for problems which
can be solved by Method 1. Two alternative methods
of using Chebyshev series in Newton iteration are
described in Sections 4, 5 and 6. There follow, in
Section 7, some examples of the solution of first-order
differential equations. The particular application to
second-order differential equations is dealt with in
Sections 8, 9 and 10.

2. The iterative solution of differential equations

Let us consider [as in Clenshaw and Norton, 1963]
the solution of the differential equation of the first order

dy
"Zx - f (x s Y )9 (1)
* Mathematics Division, N.P.L., Teddington, Middlesex.
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Several examples are given to illustrate the effective-

with the associated boundary condition

w(E) = . )
In Picard iteration, a sequence of functions y;(x)
(i=0,1,2,...) is generated from

y) = 0+ S,y i, ®

starting with yo(x) = . The convergence of the
sequence of iterates, {y;(x)}, has been studied in detail
[see, for example, Ince, 1956, Chapter 3]. It is clear
that if the sequence converges to a limit for every value
of x in a given range, that limit will be a solution of (1)
satisfying the boundary condition (2).

When the boundary condition is of the form
oay(—1) + By(+1) = y, we may still generate a sequence
of iterates, {y;(x)}, by using the equations

dy;
= f5 v, @)

ay(—1) + Byi(+1) = y. ®)

For this general problem, however, necessary condi-
tions for the convergence of the sequence of iterates are
not known. We must, therefore, proceed with caution
when solving boundary-value problems and not expect
convergence in general.

An iteration formula more powerful than (4) can be
derived for equation (1) in the following way. We
assume f(x, y) to be a function of y, regular in a region
which includes the solution and our approximations to
it, for every value of x in the range —1 < x < + 1. We
then define a sequence, {y;}, of approximations to y, by
considering the leading terms in the Taylor-series
expansion for f(x, y), in the form

yi=fyim) + i —yizy) fy(x, Vi-1) (6)

We call (6) the Newton iteration formula in view of its
close conceptual connection with Newton’s method for
approximating a root of an equation.

For each cycle of the iteration, a particular solution
¥; = v(x) of the inhomogeneous linear equation (6) may
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Iterative solution of ordinary differential equations

be calculated, to which is to be added a multiple,
pu(x), of the solution, u(x), of the homogeneous equation
W — uf(x, yi_1) = 0.

The factor p is chosen so that the resulting iterate
¥i(x) = v(x) + pu(x) satisfies the given boundary con-
dition.

The use of formula (6) will clearly yield the solution
of any linear differential equation in just one iteration,
whereas the method of Picard iteration often fails to
converge (for example, in the case y”’ + A2y =0 in
—1< x< 41 with y given at x = + 1 and A>=/2).

Kalaba (1959) establishes the convergence of the
iterates y;(x) determined by equation (6) both for the
initial-value problem of a single first-order equation
and also when the method is extended to certain
boundary-value problems of the form

y'=F(x,,)); y0)=y1)=0.

His proofs require that the functions f(x, y), F(x, y, y’)
be strictly convex (or strictly concave) as functions of
y and y, y’ respectively. We shall not, however, impose
these restrictions but present a numerical technique for
obtaining the representative Chebyshev series when
convergence holds.

3. Use of Chebyshev polynomials in Newton iteration

We now derive the relations between the coefficients
in the Chebyshev series of the functions which are used
in the Newton iteration formula (6). Let the functions
be represented by the following series:

Y@ = T AT, ™
N-—1
W = 3 AT, ®
N
S i) = B BT )
and Fi% i) = B 0T () (10)

We use the notation X’ to denote a sum in which the
first term is to be halved. For convenience in writing
we shall usually omit the index i and write a, for 40—
in order to distinguish 49~ from 4®. Thus

Y = & a0 a1

Substitution of expressions (7) to (11) in (6) involves
the multiplication of the Chebyshev series for (y; — y;_;)
by each term in the expansion (10). Thus the greater
the number of terms in this expansion, the more cumber-
some are the computational formulae; we therefore take
s in (10) to be small. Quite often the use of only the
first term, 4c,, is sufficient to yield a rapidly convergent
process (as will be seen in the examples of Section 7).
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The multiplication of the series for (y; — y;_;) by
each term in (10) is carried out using the relation

Tm(x)Tn(x) = %[Tm-% n(x) + T|m— nl(x)]' (12)
We may then equate the coefficients of T,(x) in the right
and left members of (6) to obtain the formulae
A; = br + %CO(Ar - ar) + %cl(Ar—r-l + Alr—ll —Qry
—ay_q) T34, + Ajpy) — G2 — @ir—2)
+..., r=0,1,..., N— L (13)
The sets of coefficients {4,} and {4;} are also related
[see Clenshaw and Norton, 1963, Section 3] by the
equations
2rA, = A, — Ay, r=12,...,N. (14)

If on the right-hand side of (14) we substitute the
expressions for A,_, and A4, obtained from (13), we
derive a set of N linear algebraic equations in the 4,.
These equations may be written in the form

CO(AI‘—I_Ar%-l)_4rAr:gr> r= 1,2a---:Ns (15)
where
& =2b,y 1 —b,_y) +cola,_y —a,y)

+e(Aryr— Aoy — a2 + a2

+exdrys+ A4, — Ay — Ay

— Q3 — a1+ a.+a,-3) +.... (16)
Quantities such as a, and A,, r > N which occur in

equations (15) are assumed to be zero.
The iterative process can now be outlined as follows.

1. Given the coefficients a,, r=20,1,..., N in the
Chebyshev series for y;_(x), we evaluate y; ,(x,) for
r=0,1,..., N at the points x, = cos rm/N using the
formula y;_(x) = 4(ey — «,) where the sequence «,
forp= N, N —1,...,0 is determined recursively from
o, = 2X0t, 11— 0, g+ a,Withay,,=oay, =0
(see Clenshaw, 1962, p. 9).

2. At the points x, we compute the values f(x,,y;_ (x,))
and f,(x,, y;—(x,)) forr=0,1,..., N.

3. The coefficients b, in expansion (9) (and similarly
¢, in (10)) are now derived using the formulae

N
br= 2’ B:Ts(xr)’ r=0,1,...,N— 1:
s=0

N
bN: % §OI ﬁsTs(_l)’
where

2
Br:]—vf(xnyi—l(xr))’ I'ZO, 1,---3N_1

1
and By = /(=1L yi_1(=1).

4. The equations (15) together with the boundary
condition now form a set of N 4 1 simultaneous
equations in the N 4+ 1 unknowns 4,, r=20,1,..., N.
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Iterative solution of ordinary differential equations

The solution of these equations gives an improved
N

3 A,T(x) to the solution of

=0

the differential equation and this may be used in step 1
to start another iterative cycle. Remarks concerning
the value of N which might be used at each stage of the
iteration are to be found in Clenshaw and Norton
(1963, Section 5).

The initial approximation, yy(x), to the solution is
conveniently taken to be the simplest polynomial which
satisfies the boundary conditions.

In step 4 the linear equations may be solved directly.
In the next three Sections, however, we exploit the special
form of the equations to obtain their solution more
efficiently. A recursive method is described in Sections 4
and 5, and a method of successive approximation in
Section 6.

approximation y;(x) =

4. Recursive solution of the linear equations

We consider the solution of equations (15) for the
case in which c, is neglected for r > 0; that is to say we
approximate g, by

g:‘ = 2(br 1 br~ l) + CO(ar—l (17)

It may be noted that (15) and (17) are precisely the
relations obtained for the coefficients in the Chebyshev
series when y;(x) is a solution of the equation

;1)

Y — %oy = g(x) (18)

with g(x) = f(x, y;— (%)) — $coyi—1(%).
The required solution of the set (15) is thus of the form
A, =E, + pl(3c)), r=0,1,....,N+1, (19

where {E,} is any particular solution of (15) correspond-
ing to a particular integral of (18), while 7, is the modified
Bessel function which forms the complementary function
of (15), corresponding to the complementary function

etox — 23 I (4¢,) T (x) of equation (18).
r=0

K,(3¢cy) also appears in a complementary function of
(15), but since it increases with r for large r it clearly
has a zero coefficient in any solution with a convergent
Chebyshev series expansion. This is consistent with
the absence of a second complementary function of (18).]

The solution E, can be generated by recurrence, using
the method of Clenshaw (1957). Starting with

[The function

Ey.,=Eyn,;; =0 we calculate Ey,Ey_,..., Ey in
succession from
coE,_y = coE, .| + 4rE, + g} (20)

Similarly, starting with Fy,,; = 0, Fy = 1 and employ-
ng the corresponding homogeneous relation

coF 1 = coF, 1 + 4rF, (21

with r= N, N—1,...,1 we derive a sequence {F,}
which is substantially a multiple of the sequence
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{I,(3¢y)}. We may now construct a solution
A,=E,+ pF,, r=0,1,..., N, 22)
where the factor w is determined so that the function

Z‘, A,T,(x) satisfies the boundary condition. For

example if the boundary condition is y(—1)+ap(+1)=8
we require that

$Ag — Ay +. o (—DVAy
+ (4o + Ay +...+Ap) =B (23)

Thus the required value of w is given by E + uF = B
where
E=31E,— E, +...+ (—)VEy
+ a(3Ey + E, +...+ Ey)
and
F = 1F, INF
+ a(3Fy + F; +...+ Fy).

We have so far represented f,(x,y;—1) by %c, an
average value for the range —1 < x << + 1. Higher
accuracy in g, might be achieved subsequently by
inserting the value A4, obtained as above into the right
of (16), while using a value of s greater than zero in (10).
The new g, may be used in place of g} to produce better
values of 4,. The resulting increase in complication
might be expected to be worthwhile in that fewer
iterations will be required to solve the differential
equation. Numerical experiment shows, however, that
the advantage gained is slight. Some results which
exemplify this conclusion, in the case when s = 2, will
be found in Section 7.

—F +...+(—

5. Recursive procedure when ¢, is small

When ¢, is small, there may be cancellation in using
(22) to form A,. This is a consequence of the fact that
the complementary function e!®* of (18) then has a
Chebyshev series expansion which has a more rapid
rate of convergence than that of the wanted solution,
so that both E, and F, become largely multiples of
I(3¢co) as ¢, becomes small.

The following modification, due to G. F. Miller,}
overcomes this difficulty. The sequence {F,} may be
computed as before. In place of {E,}, however,
we compute for p=N, N —1,...,1 sequences
{EPy(r=p—1,p, ..., N+ 1) satisfying the relation
(20) and the conditions E®» =0, EQ., = Given
the sequence {E»} we compute the quantity EP,
and hence the new sequence {E?~ 1} from the relations

1
B, = B + ¢ 8
.(29)
r=p,p + 1,-~-,N

£,
- 1;— Fr,

p—1

)
ES” ) = Eﬁp)

* We remark that a similar problem has been considered by
Lago (1960); the method of solution he proposes lS, however, less
convenient for our purposes.
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Iterative solution of ordinary differential equations

(We note that the first of these relations is equivalent
to (20) with E{” = 0.) Thus each sequence is obtained
from its predecessor by subtracting a multiple of {F,}.
We finally obtain a solution {E!} with the desired
property that it is not dominated by {F,}.

The above procedure facilitates the use of this method
when 0 < |co| < 2. In the degenerate case ¢, = 0 we
have Fy = A4, E, = — g¥/4r (r > 1) where the arbi-
trary constant A4 is chosen so that the boundary condition
is satisfied. The procedures described here are applicable
to most problems. If, however, some term other than
¢y dominates the expansion (10) it is possible to derive
a more suitable recurrence equation from (15) by
rearrangement.

6. Iterative solution of the linear equations

Equations (15) may also be solved by an iterative
procedure. That is, at each stage of the main iteration
we may solve iteratively the set of linear algebraic
equations for 4,, r=20,1,..., N. Such a procedure
involves computing successive approximations A4, ; to
A,, given by

sziﬁ“,j:Lz”. ©5)
where
hr,j =20b,_, — br+1)
t oAt j1— Apir,j—1 — oy F Apyy)
+ei(A)—2,j1 — Aryajo1 — Qp_a] + 4y )
+eAims 1 — Aroy o A1
— A3 1—a 31 ta, 1 —a,

+a, 3)+....

As an initial estimate of A4, it is convenient to take
A, o = a,. Equation (25) then gives for j = 1

1
A‘r,l == Z,(br—l - br+ 1)’

and the set of values {4, ,} is identical with the set which
would be obtained by one step of Picard iteration
starting from the approximation y;_,(x). Thereafter
the successive sets of values {4, ;}, j=1,2,..., give
improved approximations to the solution of the
differential equation.

A limitation of this method is that successive approxi-
mations {4, ;}, j=1,2,..., diverge if the values c, are
too large. A crude estimate of acceptable upper limits
for the ¢, can be obtained by estimating the effect on
the A, ;of small errors in the 4, ;_;. In the case when
the boundary condition consists of a given value for
yatx = — 1oratx= + 1, for example, we derive the
limits |c,| <'4/5 for r = 0, 1, 2 in the case when s = 2.
Practical examples suggest that these limits err on the
side of safety; indeed, values of ¢, in excess of 2 have
been found tolerable in some cases (see Examples 1
and 2 in Section 7).

A limitation which this procedure shares with
Method 1 is that it cannot be used without modification
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Table 1
Solution of y' = y2, y(—1) = 0-4
r 10104, r 1010q,
0 1 78885 43820 13 65902
1 68328 15730 14 25172
2 26099 03370 15 9615
3 9968 94380 16 3673
4 3807 79770 17 1403
5 1454 44930 18 536
6 555 55020 19 205
7 212 20129 20 78
8 81 05368 21 30
9 30 95975 22 11
10 11 82557 23 4
11 4 51697 24 2
12 1 72533 25 1

to solve problems with the periodic boundary condition
V(=1 = p(+D).

It may be noted that the methods described here and
in Section 4 are mathematically equivalent when the
same approximation to f,(x, y;_) is used at each stage.

7. Examples

The main purpose of the following examples is to
compare the numbers of iterations which are necessary
to obtain solutions to 10 decimal places when using
Picard and Newton iteration. For simplicity, in each
example the same number of terms was used for every
cycle of the iteration; the number was chosen to yield
12 decimal places in the solution in order to allow for
rounding errors. The computations were carried out
on the ACE computer of the National Physical
Laboratory.

Example 1
The problem

y =y
y(—l) =0-4

2
Y T3 T
The coefficients in the infinite Chebyshev expansion of
this solution are given by

_i_tlg’
a, = Vil 2 .
The initial approximation used in this problem was

Yo(x) = 0-4 and the value used for N was 30. The
solution given in Table 1 (correct to 5 x 10—'') was

has the solution

—I<x< + 1.
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Iterative solution of ordinary differential equations

obtained by Picard iteration in 20 steps. Using Newton
iteration, with s = 0 in (10), twelve iterations were
needed. When the successive correction procedure
described at the end of Section 4 was used, with s = 2,
10 iterations were needed; the numbers of successive
corrections required at each stage being 1, 9, 9, 8, 6, 5,
7,2,3,4.

Since df/d0y = 2y we see from Table 1 that the
coefficients ¢, ¢® and ¢ tend to the values
2ay = 3-577..., 2a, = 1-366... and 2a, = 0-521...,
respectively. The tentative analysis indicated in Section 6
notwithstanding, the procedure indicated by (25) con-
verges in this case, and only 8 iterations were necessary.
The numbers of successive approximations required at
each stage were 14, 17, 16, 13, 11, 7, 6, 2.

Example 2
The problem

y=x—y
y(0) = — 0-72901 11329 47...
has the formal solution
_ A4l
A;(x)
where A;(x) is the Airy integral, given by

y

A =L f cos(h® + xi) dr.
T

With N = 18 and yy(x) = — 0-72901.. ., the Chebyshev
coefficients given in Table 2 were obtained. With Picard
iteration 16 iterations were necessary to obtain this
solution. When Newton iteration was used with s = 0,
11 iterations were necessary. With s = 2, 8 iterations
were needed when the algebraic equations were solved
recursively, and 6 when the algebraic equations were
solved by iteration.

Example 3
As an example of a problem for which c{? = 0 we
take
y =siny
y(—1) = cos~! (tanh 1)} )

The solution y(x) satisfies the equation cos y = — tanh x.
Thus 9f/dy, which is equal to cos y, is an odd function
(—tanh x) of x and all terms of even order in its
Chebyshev series are zero. In particular, ¢, = 0. With
Method 1, 10 iterations were needed to attain the
coefficients in Table 3. Newton iteration with s =1
was applied and gave the solution in 7 iterations.

Example 4
A problem with periodic boundary conditions is

exemplified by
¥ =1—yY2 4+ cos mx,

—4<x<+L}
y(—=1) = y(+1).
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Table 2
Solution of y' = x — 2, y(0)= —0-729 . ..
r 1010, r 1010,
0 — 1 33182 01337 8 + 61673
1 — 56577 45689 9 — 13822
2 4+ 6555 80575 10 + 3101
3 — 1231 16778 11 — 696
4 + 257 48695 12 + 156
5 — 55 97968 13 — 35
6 + 12 37501 14 + 8
7 — 2 75722 15 — 2
Table 3
Solution of y’ = siny, y(—1)= +0-705...
r 10104, r 1010g,
0 4 3 14159 26536 9 4 67117
1 + 89586 72584 10 0
2 0 11 — 4660
3 — 3167 09343 12 0
4 0 13 + 335
5 + 166 85090 14 0
6 0 15 — 25
7 — 10 16267 16 0
8 0 17 + 2

This problem has a unique solution. Newton iteration,
using recursive solution of the algebraic equations is
readily applicable to this problem. Starting with
yo(x) = 1 and s = O the values given in Table 4 were
obtained after 6 iterations. With s = 2, 7 iterations
were necessary. This lack of improvement when
s=2 is due to c¢; being the most dominant term,
after ¢y, in the Chebyshev series for 9f/dy. In fact,
with s = 3, only 4 iterations were necessary.

8. Second-order equations

Differential equations of order higher than the first
may be expressed as a set of first-order equations,
provided only that the derivative of highest order is
expressible explicitly. Thus no new techniques are
required. The frequent occurrence of second-order
equations in practical problems, however, indicates the
desirability of more direct methods of attack for such
problems. The extension of Method 1 for the equation

Y =f(x,)) (26)

has been given by Clenshaw and Norton (1963).
From the first-order terms of the Taylor series for

f(x, y,¥), in some neighbourhood of y = y;_;(x), we
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Table 4
Solution of y’ = 1 — y'2 + cos mx, y(—1) = y(+1)

r 1010g, \ r 1010q,

|
0 + 199458 82313 | 13 + 13328
1 + 17707 96542 14 — 349
2 — 4830 96257 15 — 2374
3 — 20694 41133 16 + 1094
4 + 1478 90267 17 + 14
5 + 3167 72534 18 — 236
6 — 121 73954 19 + 101
7 — 185 14891 20 + 7
8 — 1 53820 21 — 25
9 + 4 03430 22 + 10
10 + 1 79605 23 + 1
11 — 27527 24 — 3
12 — 26764 25 + 1

may derive the Newton iteration formula

v — g(x)yi — h(x)y; = f(x, Viets Vi- D)
—&8X)yiy — h(x)y;—y, (27)

where h(x)=f,(x, y;_ 1, ¥i 1) and g(x) =/, y; 1, ¥/ 1),
which is directly analogous to formula (6).

In this Section we shall give a numerical procedure
similar to that described in Section 4. For simplicity,
only the first (constant) term in each of the Chebyshev
expansions of f, and f,, will be considered. That is, we
shall assume that

h(x) = 3¢,  g(x) = 4.

Let the functions occurring in (27) be represented by
the following series:

N
yi(x) = X" ADPT(x),
r=0

N
Yix) = X 49T (x),
r=0

N
yix =" A/OT,(x)
r=0

and
’ N -
f(x’ Yi—15)i— 1) = g:(; b’.(')T,(X).

As in Section 3, we omit the index i and denote the
coefficients {4¢~1}, {4,9~V} by {a,} and {d)}, respec-
tively. It is again assumed that N is large enough to
ensure that the series represent the functions to sufficient
accuracy. Substituting these expressions in (27) and
equating coeflicients of T,(x) we obtain

A — 3cod; — Ycod, =d,, r=0,1,...,N (28)
where d, = b, — }coa, — cea,.
F
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From (28) we have

(A7 — Al'cy) — deo(A; 0= Arey)
- %CO(AI"'l - Ar-l- l) = dr 1 dr%fl'

Using (14), ie. 2rd,= A,_., — A;.,, and the cor-
responding expression 2rd, = A;_; — A, .,, we derive

A, — cird, — tef(A, s — Ay ) =d, | —d,. . (29)

Equations (29) and (14) may be rewritten as the
following system of recurrence equations

COAr— 1 :COA,--;- 1 +2r(2A;‘_c(;AI)+2(dI‘ l_dl'— 1)} (30)

A,l-_l = A;-}-l + 2"A,.

forr =N, N—1,..., 1. Every solution of this system
may be expressed as the sum of one particular solution
E.,E (r=0,1,...,N) and a linear combination of
four independent solutions of the corresponding homo-

geneous system

coB,_ = ¢oB,. | + 2r(2B, — c(;B,.)}

31
B, = B;+1 + 2rB,. 0

By our method of solution we automatically exclude
two of these solutions, which tend to infinity with r.
Therefore we need to construct two solutions of (31),
F,, F, and G,, G; say, which tend to zero as r tends to
infinity.

We then determine the constants w and v in the
expression

A, = E, 4+ pF, +1G,, 32)

N
to ensure that the iterate y;(x) = X’ 4,T,(x) satisfies

the prescribed boundary conditions.

In order to illustrate the method, we describe the
above process, using N = 4, for the equation y”’ = y?,
with the boundary conditions y(—1) = 0, yp(+1) = 1.
We take yo(x) = #(1 4+ x) = % + 3Ty(x) as our initial
approximation to the solution, this being the simplest
polynomial which satisfies the boundary conditions.
Then

S, y0, o) = ¥5 = @) + $T(%) + $To(x),
(%, y0, 0) =0
and S5(%, Yo, Yo) = 2y = 3(2) + Ty(x).
Hence ¢g =2,¢0=0,dy= —14,d, =0and d, = 1.
The recurrence equations (30) become
A=A, +2r4; +d, .| — d,._l}
Ar_y = Ay + 214,

and, letting Ey .y = Ey,., = 0, Ey = Ey = 1 we obtain
for N = 4, the values in Table 5. Similarly, equations
(31) become

B,y =B, +2rB,
B, =B/ |+ 2B,

and WIth F5=F5'=GS=G§=0, F4:F‘£:G4: l.
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Table 5
Solution of y" = 2, y(—1)=10, y(+1)=1

First iteration

r d E, E; F, F; G, G, A,
0 —0-25 456-25 457 457 457 457 —457 0-891

1 0 204 203-5 204 204 —204 204 0-481

2 0-125 48-875 49 49 49 49 — 49 0-051

30 8 8 8 8 — 8 8  0-019

4 0 1 1 1 1 1 — 1 0004
Second iteration

v yl(cos ’%’) y%(cos & ) b, d, E E F, F G, G 4y SOUTION
0 1-000 1-000 0:630 —0-164 564-690 563-630 565-662 565-662 565-662 —565:662 0-892 0-8910

1 0-768 0-590 0:454 0:025 254-474 227-000 255-391 227-520 —255-391 227-520 0-484 0-4830

2 0-398 0-158 0-171 0-126 54-750 54-682 54-880 54-880 54-880 — 54-880 0-051 0-0513
3 0-114 0-013 0-046 0-029 8:947 8 8-:980 8 — 8-980 8 0-016 0-0165
4 0-000 0-000 0-014 0-010 1 1 1 1 1 — 1 0-003 0-0031

5 0-0005
6 0-0001
and G; = — 1 we obtain the values of F,, F;, G,, G, given rence formulae are

in Tab}/e 5. We maly nolte 2that the equation satisfied by Ay = A, +2:245¢4, + 1-122(d,, , — d,_})
Yiisyr —yi = — i+ ax%.

The Chebyshev coefficients F,, G, are obviously
multiples of those of the complementary functions e*
and e+, respectively, and E, is identical with F, except
for the addition of the particular integral

n=—4— =D — AT,
The boundary conditions y(—1) =0, y(+1)=1
imply that
YA + A, + A4 =1,
Ay +4;5=1.
We therefore compute the quantities
%Eo + Ez + E4 = 278, %Fo + Fz +F4 = 278-5,
3Gy + G, + G, = 2785
E +E; =212, Fi+F;=212, G, +G;=—212

and from the equations
278 + p278-5 4+ v278-5=0-5
212 + p212 — 212 =0-5

we find that p = — 0-997025, v = 4 0-000616.
the values of A4, given by

A, = E, + uF, +G,,

satisfy the requirements imposed by the boundary
conditions.

From the coefficients A4, the values of y;(x) can be
computed at the points x, = cos (rm/4), hence the
values of p¥(x), the coefficients b, in the Chebyshev
series representing »?(x) and finally the numbers
d (r=01,...,4).

For the second iteration ¢, = 1-782, and the recur-

Then

r=20,1,...,4,

82

Ay = A;+1 + 2rA,.
The values obtained during the second iteration are

given in Table 5 and also the solution correct to four
decimals.

9. Second-order equations when ¢, is small

As in the case of first-order equations considered in
Section 5, there may be cancellation consequent upon
the use of (32) to obtain A4, when ¢, is small. Let us
suppose that straightforward application of the recur-
rence relations (31) forr = N, N — 1,..., 1 starting with
Fy=Fy=1and Fy, | = Fy,; = 0, yields sequences
{F,}, {F;}. To obtain a second solution {G,}, {G;}
which is essentially distinct from {F,}, {F,} we compute
sequences {GP}, {G/»} (r=p—1,p,...,N) for
p=N,N—1,...,1 from the relations

W, =0, GP=0, G =1, G, —o,

oGPy = oGy + 4GP, GP = G,

GP=Y =GP — y,F,

GO — G — y,:,F;} r=p—1,p,...,N

where y, = G /F,_, is chosen so that G{7D = 0.
Finally we take G, = G\, G, = G".

To obtain a solution {E,}, {E,} of the inhomogeneous
system (30) which is not dominated by {F,}, {F,} (or
possibly by {G,}, {G;}) we calculate sequences {E)},
{E®™ (r=p—1,p,...,N)yfor p=N, N—1,...,1
concurrently with the sequences {G{?}, {G'} from the
relations -

N _ FN) — F(N) _ (N)
Q) = B = B, = B =0
cEP | = coEg”_IZl +2d, .y —d,—y)
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Table 6

Recursive procedure when ¢, is small
r d, F, F, G¥ G,® G® G, E® E/®
0 —0-25 457 457
1 0 204 204
2 0-125 49 49 —49 0 —0-125 0
3 0 8 8 8 0 0 —8 0 0
4 0 1 1 0 1 — 1 0 0 0
r G(rZ) G"(Z) E£2) E;(Z) G(rl) G’r(l) ESI) E;(l)
0 —457 0 0-370 0
1 204 0 0 0-020 0 —204 0 0
2 0 49 0 0 — 49 0 —0-005 0
3 8 0 0 0-020 0 —8 0 0-019
4 0 1 0-003 0 | — 1 0 0-003 0

Ep(f)l = Ep(—i-pl)

(p—1) — E( -1
Ejr” >_Efp)—a,,F,.—/3pG§1,' ) } r—pptle N
E(o=0 = E9 — o,F/ — B,G,0 D

where «, and B, are determined so that
) — Flo-1)
E®D = E@7) — 0.
Since G711 = 0 we have
o, = E{P\[F,

B, = ESD — a,F,
P "(p—1 .
Grh

Finally the solution with the desired property is given
by E, = EW,E = EO,

This process is exemplified in Table 6 where the
sequences are given for the first iteration in the example
¥ = y?, which was presented in the last Section.

In the degenerate case, ¢’ =0, the system (30)
becomes

A;‘—l ;A;+l+2rA,

. ' 1
COA,.,I = 2Ar—l + "—_“_l(dr —d,_ 2)

for r=N, N—1,...,2. Only one. solution of the
corresponding homogeneous system is here required to
obtain the general solution. The boundary conditions
are satisfied by calculation of 4, and of the arbitrary
parameter in the general solution.

When, in addition, ¢y = 0 the system (30) becomes

, 1
A= Z_’.(dr—l - dr%l)

1, . ,
Ar = Z(Ar~l — Ar+l)

83

which is merely another form of the equations given by
Clenshaw and Norton (1963) (in Section 6) when extend-
ing Method 1.

10. Examples

1. As an example of a second-order differential

equation we consider van der Pol’s equation

d%y ) dy -

dt2+(y l)dt+y 0
with the boundary conditions y(—%) = 0, y(+1%) = 1.
Writing ¢ = }x and using primes, as before, 1o denote de-
rivatives with respect to x we have 3" = (1 — y?)y’ — %y,
with y(—1) = 0, y(+1) = 1.

The values, to 10 decimals, of the coefficients which
represent the solution y(x) are given in Table 7. With
the present method these values were obtained after
eight iterations. Using the obvious extension of
Method 1 described by Clenshaw and Norton (1963),
11 iterations were necessary.

Table 7
Solution of y” = 1(1 — y?)y’ — 1y,
Y—1)=0, y+1)=1

r 1010q, r 1010q,
0 + 96831 51979 8 — 7368
1 4 50955 14886 9 — 2786
2 4+ 1727 88627 10 — 154
3 — 959 25858 11 + 70
4 — 148 30708 12 + 15
5 + 3 59122 13 0
6 + 4 73599 14 — 1
7 + 54566 15 0
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Also used was a process of successive approximation,
similar to that of Section 6, at each stage of the iteration
to take account of three terms in the expansions of
f,or f,, or both. The results are summarized in Table 8.
The consequent reduction in the number of iterations
does not appear to justify the extra complication of the
method.

Table 8
} NUMBER OF
COEFFICIENTS CONSIDERED | ITERATIONS
None 11
’
co Co 8
’ ‘ 8
Co, C1» C2 Co ‘
’ ’ ’
Cy Co, C1, C2 x 6
!’ ’
€5 €15 €2 Cos €1y €2 ‘ 5

2. A problem which arose in connection with the
analysis of sea-waves involved finding periodic solutions
of the differential equation

vy + Ay? + B(y — 20 — 1/12sin wx) = 0

with 4 = 1-003736 and B = 176-44545. The result
was required to three decimals and was obtained to this
accuracy after four iterations starting with yo(x) = 20.
The solution to four decimals is given in Table 9.

Table 9

Solution of

1
"4 Y+ B(ly —20 — _si =
yy A(y") (y 0 lzsmnx) 0

r 104a, r 104a,

0 + 400034 6 — 44
1 — 4002 7 + 47
2 + 46 8 + 12
3 4+ 4690 9 — 1
4 + 50 10 — 2
5 — 734 11 0

11. Comparison with Runge-Kutta method of solution

It is of interest to compare the application of the
present method with that of a standard fourth-order
Runge-Kutta program. Accordingly the comparison
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Correspondence
To the Editor, character set, reasonable transparency of interpretation and
The Computer Journal, ease of punching need at least the 88 type slugs potentially
Sir, available on current electrical typewriters, even when non-
Hardware Representation of Algorithmic Languages escaping keys or similar tricks are used in order to increase

the effective number of available characters. A considerable
loss in transparency or convenience results from providing a
double-case full point or from wasting both cases of one key
on an erase symbol.

The rotating-head typewriter gives some improvement, in

I write in support of those correspondents to The Computer
Journal who have urged the need for the hardware used in
tape preparation to be tailored to the needs of the user. This
is in no way to deny that, so long as cost and availability of
hardware impose limitations, it is useful to devise hardware .
representations which mitigate these limitations, as is done as mu}::h 35 t/};e ;: hlellracter.ls eélcan be a}lttlarzt;d o eZé%ha?lgmg Vs
for example in the Royal Radar Establishment’s 5-hole code type head. ully avarlable set o or characters

for ALGOL 60 described by Mr. P. Taylor on page 335 of iv::ullids b: r\ig;):mr::;:niE;;te;et?l(;ze\;?r, ?ir:l(tiinthls ]I:r(;l/)g:lli
your January 1964 issue. plie p g

In the long run, however, these limitations must be over- require 7- or 8-hole tape, in conformity with Dr. Barron’s

come rather than circumvented. On the same page, Dr. D. remarks.

Barron asks why current tape preparation equipment is not The s_cale of.money anq effort ne;ded to develop tape
more suitable and economical. Particularly with regard to preparation equipment that is really suited to the needs of the

cost, part of the answer lies in commercial reasons which it user is small in comparison with that required to design and
. . . . construct a medium-sized computer. If a computer manu-
might be invidious to debate but which we can influence . . s
e . . facturer were to undertake this task, it would be surprising if

as buyers. The unsuitability of present equipment arises

basically from the fact that it was never intended for computer tf}e resultant Increase in computer usage fallgd to recompense
Lo him for the investment. While it is undesirable to impose
use, but has been adapted from other applications.

Teleprinters were devised for remote working by means of conformity at too early a stage, the Computer Society could

a single electrical circuit. In computer applications, the help catalysing co-operation in these developments.

. . A In a forthcoming issue of the Automatic Programming
distance to be spanned is generally much less and multi-wire Information Bulletin, 1 urge the need for compilers to give the
working is preferable. The serial coder and de-coder, which > & p g

are central to the working of the machine in telegraphy, have user the option (.’f dec!armg his input and output 'harc'iware
therefore to be removed or nullified for computer use. This representations (mcludlng.composnte symbols) d.urmg input.
leads neither to convenience nor economy ' Any manufacturer who in this way makes his computer

The teleprinter shares with electric tyiaewriters whether directl)_/ compatib.l c Wi.t h the hardwar.e representations of all
associated with punched paper tape or not, the de;‘ect of an potential users will evidently place himself at an advantage.

insufficient character set. A character set which is adequate Yours faithfully,
for its intended purpose of business communication is quite

. . PETER FELLGETT.
inadequate for mathematics, as anyone knows who has

published a paper and has had to fill in much of the mathe- Royal Observatory,
matics by hand on the typescript. While it is not impossible Edinburgh 9.
to represent almost any algorithmic language with any 17 March 1964.
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