RAPIDWRITE

Running time

In considering the facts about to be quoted it is
important to remember that the version of RAPID-
WRITE we used was intended to produce object pro-
gram for a non-tape 1301 with only 400 words of IAS.
Any IAS in excess of this may be used only for data
areas. For this reason most of the running time is
occupied in transfers of fresh supplies of program from
the drum. In the case of input and output operations
the large number of such drum transfers necessary for
each line or card reduces the running speed to as little
as one quarter of the maximum speed of the printer or
card reader.

A machine-language program with the same storage
limitations as the compiler might also fall short of
maximum speeds, and to this extent RAPIDWRITE
might compare less unfavourably with machine language
on such a computer.

A monthly task is to mark off some 2,000 payable
orders cashed during the month against a tape file
containing, amongst other details, particulars of all
payable orders issued. The file occupies slightly more

User’s experience of CLEO

By M. Richardson*

The Board of Trade Census Office has used CLEO for
preparing Annual Inquiry registers, and issuing and
processing the 1963 returns. We have also used CLEO
for a register of new companies and are now in course
of applying it to all new jobs. Comments made here
relate to the first seven programs written, which were
analyzed in some detail.

The first CLEO compiler did not become available
until the end of 1963 and is still not on general release.

1. General comments
(a) Adequacy

So far CLEO has covered all our programming
requirements since these needed only integer arithmetic.
It has not been found necessary to enter the lower
language, i.e. Intercode. The major extension of
facilities to floating-point values, etc., will cover all future
requirements; there will be no need to know Intercode.

Facilities are to be extended to cover function calls
and floating-point working within the next three months.
In general, most of the features mentioned in T. R.
Thompson’s paper in this Journal have been included in
the system or will be included very shortly. At present
the major limitation is on editing values for printing;
this has been covered by a CLEO subroutine.

(b) Ease of learning, etc.
The CLEO conversion course provided for the first

than one 3,600 feet of tape, the full-speed passing time
of which would be about 6 minutes. A balance sheet is
accumulated during the run and printed out in about a
dozen lines at the end.

This program was written in RAPIDWRITE by a
programmer who was familiar also with machine lan-
guage. When the program was complete and proved it
was allowed to run for some two hours, and then an
assessment was made of its progress. It was apparent
that the full running time would be about eight hours.
The original programmer then undertook an optimizing
operation, consisting mainly of writing out some of the
multitudinous drum transfers arising from use of the
PERFORM option, and the job, reduced in time to
about two and a half hours, was released for use.

This time was, of course, still much too slow for
permanent use, and when it became possible to divert a
programmer it was rewritten throughout in machine
language, using the systems work already done and
working from the excellent flow charts produced for the
RAPIDWRITE program. The rewrite was proved on
its third test, and runs in 8% minutes.

team of Intercode programmers occupied one and a
half days. There is no doubt that CLEO is easy to
learn and with the compiler checks provided it is easy
to use correctly.

(¢) Debugging

Amendments are very simple to make in CLEO. The
trials data system now being provided is even simpler
than the Intercode system. It was difficult to locate
logical errors in Intercode, but it is easy to do this in
CLEO. Desk checking becomes more effective.

(d) Compiler problems

Only one minor imperfection appeared in the first
version; this is now being put right.

2. Satisfactory features
The following table gives some idea of the reduction
in programming time made possible by CLEO.

RELATIVE PROGRAMMING EFFORT
(time units)

INTERCODE CLEO
Flow charting 10 0
Coding time 55 10
Data description 10 2
Checking 10 2
Proving 15 2

* Board of Trade, Census Office, Lime Grove, Eastcote, Ruislip, Middlesex.

¥202 I4dy 61 U0 3senb Aq LOLGEE/Z0L/Z/L/e1o1e/|ulWwoo/wod dnorojwepeoe//:sdiy wolj pepeojumod



CLEO

Reduction in time between specification and final
proving run may be as much as 75%,.

Documentation has been helped enormously and
standardized data descriptions, etc., have also contri-
buted to economies achieved under the new system.

3. Unsatisfactory features

(i) Expansion of files

An extra five characters are added to every record.
In the case of small records this could be important, and
extra steps may be needed to create block-records in
these cases.

(ii) Incompatibility of files
Intercode files cannot be read directly by CLEO
programs.

(iii) Compiling timc

In general this may be equal to the normal translation
time which is an integral part of the compilation process.
In other words, the total translation time is nearly
doubled. For average programs this time increases
from 8 to 16 minutes. Savings are achieved, however,

Reference

by substantial reduction in the number of re-translations
and amendments required.

(iv) Inefficiency

Program expansion seems to be of the order of 109,
but efforts are being made to reduce this. The main
inefficiency is related to the file expansion referred to
above.

(v) Training
There is still no Teach-Yourself-CLEO manual.

(vi) General

We are in no way critical of the compiler’s editing
and reporting action. This is even better than we had
expected. Our chief criticism is of the compiler’s late
arrival.

4. Conclusions

All our new programs will be written in CLEO, and
all existing files will be converted to CLEO format. We
have found that this system helps to balance program-
ming and computing capacity, and furnishes a basis for
training systems-analysts.

TuompsoN, T. R. (1962). “Fundamental principles of expressing a procedure for a computer application,” The Computer Journal,

Vol. 5, p. 164.

Book review: Mathematical programming

Recent Advances in Mathematical Programming, Edited by
RoBERT L. GrRAVES and PHILIP WOLFE, 1963; 347 pages.
(Maidenhead: McGraw-Hill Publishing Company Ltd.,
92s.)

It is dangerous to include words like “recent” into the title
of such a collection as this, which contains contributions to a
Symposium held in 1962 at the University of Chicago. What
was new then, is now at best a basis on which to build even
more recent developments. Such thoughts have some topical
significance in 1964, since in July of this year the sequel
to the Chicago meeting will be held in London, sponsored
by the British Computer Society in common with other
associations.

The 43 titles in the book under review refer to 23 full papers
and 20 abstracts, concerned with theory, applications, and
computational aspects. We may assume that it is the last-
mentioned category about which readers will expect to find
some comments in this Journal.

Most papers on computational methods refer to the Sim-
plex Method of Linear Programming, or to its adaptations to
the non-linear case. M. Balinski describes a method for
solving pairs of dual programs, while P. Wolfe gives a survey
of non-linear methods, with a bibliography. Clair E. Miller

103

describes a method for separable programming (the objective
function consists of additive terms each of one single variable),
which has proved to be applicable to many problems which
arise in practice. G. B. Dantzig describes a “‘compact basis
triangularization,” and E. M. L. Beale the use of pseudo-basic
variables, a method which is, in a sense, the dual to the
Dantzig-Wolfe decomposition principle. Other algorithms
inspired by the latter are given by J. M. Abadie and A. C.
Williams, and by J. B. Rosen.

P. Wolfe and Leola Cutler report on tentative conclusions
from SCEMP (Standardized Computational Experiments in
Mathematical Programming) and D. M. Smith and W.
Orchard-Hays on experiments with product form codes.
Glenn T. Martin describes an accelerated algorithm for integer
programming.

It will, of course, be appreciated that the practical man can
also derive useful ideas from theoretical papers, and even
from abstracts. It is therefore recommended that he should
at least glance at the whole collection.

In any case, whoever the reader, the book is a useful
reference to one stage in the development of mathematical
programming, though perhaps not a very exciting one.

S. VAIDA.

¥202 I4dy 61 U0 3senb Aq LOLGEE/Z0L/Z/L/e1o1e/|ulWwoo/wod dnorojwepeoe//:sdiy wolj pepeojumod



