Experience of program development with FACT

By O. S. Lumb*

This paper was presented to the B.C.S. Symposium on Practical Experience with Commercial
Autocodes held in London on 25 March 1964.

Our Honeywell 800 was ordered on 21 March 1963.
During the following fortnight all our programmers
attended a FACT programming course which was held
on our premises. Subsequently, three of these pro-
grammers took an Argus (Symbolic machine language)
course. We had a number of small jobs, currently done
on punched-card equipment, which had to be taken
over temporarily until they are absorbed at a later stage.
These jobs were used for programmer training, and some
of the compilation and debugging was carried out on
the Honeywell 800 in London. Our machine was
delivered on 30 August and handed over after satis-
factory acceptance trials three weeks later. Since hand-
over up-time has averaged 989, and parallel running
has averaged 109,. We expect the latter to increase
when more work is operational. = The compilers and
other software have functioned equally well, and com-
paratively few troubles, except in becoming acquainted
with an enormous selection of systems facilities, have
been experienced.

Adequacy of programming facilities provided

We have found FACT to be a very comprehensive,
powerful and well-documented language. In addition
to procedure and file manipulation statements it includes
input editors for cards and paper tape, update packages,
a report writer, and sort and collate routines.

It was issued in 1961 and the version supplied to us in
September 1963 contained many revisions and is a
substantial improvement over earlier versions. The
current FACT tape still contains five bugs.

Generation of object programs proceeds in three
stages:

(a) Compilation proper into Argus language. This

is carried out on one program at a time.

(b) Assembly of Argus into relocatable binary coding.
This is a batch process and can be carried out on
as many programs as are on the input to assembly
tape, at the same time, with little appreciable
difference in machine time.

(c) Selection of programs, relocation and scheduling
for production running.

Alterations can be made to programs at almost all
stages, and this facility is used in debugging.
A comprehensive diagnostic system is extremely

* The General Electric Company Ltd., Witton, Birmingham 6.

104

useful both in detecting language usage errors and in
terminating compilation at an early stage if the errors
are fatal. In such cases the Console Typewriter types
out the Word “Dirty.” All FACT statements and the
diagnostics are printed out on the printer, and the
compilation is abandoned. If the program has no fatal
diagnostics it will be compiled ready for assembly on to
a symbolic program tape, and a printout of the FACT
program is produced automatically. During assembly
further diagnostics may be generated, although this is
not usual, and an EDIT tape is produced from which
a list of the Argus instructions and numerous remarks
and comments can be printed if required. This is a most
valuable facility for debugging, and although not always
necessary we have made a practice of printing this out
on every occasion. We shall be more selective in future
as experience is gained and machine time becomes less
available.

A Program Test System and several other systems
programs are available to aid in program testing, of
which one in particular, called THOR, is very valuable.
This is a general tape-handling and correction program
which permits positioning, copying, correcting, editing,
rewinding, searching, sampling and comparing of tapes.
This system has enabled us virtually to eliminate the
need to write programs to test the validity of data on
magnetic tapes, although in the beginning several such
programs were written and developed, and then found
unnecessary. The programming facilities provided are
certainly adequate; the problem is that no one person
can be expected to know them all, and there are so
many ‘“knobs to twiddle” that great care is necessary
to avoid misuse and consequential excessive use of
machine time.

The following figures have been derived from our
records over the past nine months.

Average program size: 400 Descriptor cards.
Average coding generated: 5,100 Instructions + remarks
and notes which appear only in the listings.

Time for compilation: 4-5 minutes per 100 cards if
program is clean. 1 minute per 100 cards if pro-
gram is ‘““‘dirty”’, i.e. has fatal diagnostic.

Assembly time: The basic time for this operation is
about 20 minutes, after which there is a marginal
increase for each extra program.

Collection and Scheduling time: 20 to 30 minutes per run.

$202 YoJe\ ¢ uo 3senb Aq G| LGEE/Y0L/Z/L/e1oMe/|ulwoo/woo dno ojwepeoe//:sdiy wolj pepeojumod

FACT

The accuracy of the programs produced

The accuracy of conversion from correct source
language to machine language is very high, and apart
from the cases of known compiler bugs we have had no
occasion of faulty conversion due to the software
systems.

The language is easy to learn and use correctly, but
this does not necessarily mean efficiently. This still
depends very much on the individual. Our pro-
grammers who took the first course were all new to
FACT, but some were fluent in Nebula. They were all
able to write programs within a few weeks, but took
from 8 to 12 weeks to achieve reasonable competence,
and there has been progressive improvement since.

It has been found that previous knowledge of Nebula
has been a disadvantage due to the similarity of the two
languages causing persistent confusion. We have also
found that people with little or no programming
experience who have joined the group later, have learned
much more rapidly, probably due to the greater experi-
ence all round them. As an example, one young lady,
with ““A” level maths. and no previous experience, who
joined the group in July has written and debugged
27 programs, mainly concerned with reports and test
programs, which have generated over 150,000 instruc-
tions; and she has not had a formal programming
course.

Programs are readily intelligible to other programmers,
documentation is simplified and systems analysts can
be expected to program and implement their work.
We have found that a Systems Analyst/Programmer can
handle several programs at once and, with experience,
the average time to write and debug a program is about
two man-weeks. The elapsed time, is, of course, depen-
dent upon how many programs he is handling, and upon
getting access to the computer.

However, it is quite clear to us now that the provision
of a powerful autocode and compiler cannot relieve the
programmer of the obligation to specify exactly and
unambiguously, down to the finest detail, the processing
to be performed. We have been rather disappointed to
find that errors in source language, even after checking
by another programmer, have been considerable and
form a substantial part of our “bugs”.

We are sure that the old idea of having clerical or
relatively low grade staff to program in autocode is a
fallacy. Detailed systems analysis and programming is a
skilled business, and a good proportion of the team must
be of the calibre of machine-language programmers
and be trained in Argus. FACT is a very powerful aid
to the skilled programmer, but it is no substitute for
programming skill.

During the past eleven months, including the training
period, about 80 man-months of program writing and
debugging effort has been put in by the team; 215
programs have been written and had at least one com-
pilation clean of first diagnostics. These programs
represent over a million Argus instructions, although,
to get to the present position, over 34 million instructions

C

105

have been generated through repeated compilations.
Of these programs 156 are working and 30 were aban-
doned either because they were too big and had to be
split, or because of system changes or, in the case of
test programs, they were no longer necessary. The
remainder are still in check-out. The working programs
alone represent a net output of approximately 430
machine instructions per man-day.

During the first eight months whilst experience was
being gained, the influence of Nebula was still felt, and
plenty of machine time was available; the average
number of accesses to the computer per clean program
was approximately 31, whereas in the past three months
it has fallen to 21. More recently a suite of small
programs written by an experienced programmer has
been developed with, on average, 12 accesses per pro-
gram. Although not strictly correct one might consider
that one complete cycle of compilation, assembly and
checkout represents four accesses to the computer.

It is a little difficult to be precise or to draw too firm
conclusions from our experience to date. The indication
is that although the language is easy to learn it takes
about six months to become reasonably proficient, and
this is considerably influenced by the general level of
experience in the group.

Debugging methods adopted
Debugging is carried out by three main processes:

(a) Desk checking of systems and programs.

(h) Recompilation of programs after testing against
test or live data.

(¢) Reassembly of programs after testing against test
or live data.

Desk checking is important and, as machine avail-
ability becomes more restricted, will become more so.
It is, however, highly fallible and we are not very
satisfied with the results so far achieved. Fortunately,
until the program is clean of fatal diagnostics the time
used in compilation is small, being between 3 and 6
minutes, depending on the size of the program. In the
early days we found that on average 3% runs were neces-
sary; one program actually had 16 runs before it was
finally abandoned as too big. After six months the
average had dropped to 2-9 runs per program and there
has been a steady improvement since. The diagnostics
produced at this stage are of great assistance. In the
early days most programmers were dismayed at the
errors disclosed.

Once the program is clean of diagnostics it will
compile and the FACT listing produced is then checked,
although, as in the case of preliminary desk checking,
this is not very effective. Very occasionally a pro-
gram may contain an error which would prevent
assembly. In such a case the Console Typewriter will
type out “N.G. for Assembly” and the reason. After
correction a recompilation is necessary.

The program is then assembled and any diagnostics
are printed out with the Argus listing. When these

$202 YoJe\ ¢ uo 3senb Aq G| LGEE/Y0L/Z/L/e1oMe/|ulwoo/woo dno ojwepeoe//:sdiy wolj pepeojumod

FACT

have been cleared the program can be checked out
against test or live data.

This is done by pulling the program off the Symbolic
Program Tape via a Program Selection Process. Derails
are specified at this point. During the checkout, if
derails have been specified, a rough output tape is pro-
duced containing the state of core store, special registers
and tape records. If the program fails for any reason a
dump of the data on the rough output tape at the point
of failure can be printed. During the checkout a running
commentary of progress indicating the loading of each
segment is printed out on the Console Typewriter. This
is often adequate, with the aid of the Argus listing, to
identify troubles, without having to dump the rough
output tape. Many bugs can be found by studying the
FACT listing, for example, in file outlines, field lengths,
input and report descriptors, and obvious logical errors.

Beyond this point, however, we have found that the
use of Argus listings in the hands of a skilled Argus
programmer is essential, and even where a bug can be
found by inspection of the source language it is often
much more readily detected in the Argus listing. There
is no doubt that we could not have found the compiler
bugs, and probably many others, by any other means.
For this purpose one man in particular has become a
specialist in Argus and assists any of the FACT pro-
grammers when they are stuck.

Many bugs can be corrected by patching in Argus
either during a reassembly which saves recompilation,
or by one-for-one instruction replacement at check-out
time, which is done on the Console. This is done by
specifying appropriate loader stop instructions through
the Program Selection Process. In the latter case the
program has to be recompiled, or reassembled subse-
quently. At the same time the source language is
updated. Wrong coding through bugs in the compiler,
for which temporary solutions have been found, can
only be corrected by patching during reassembly.

We have found that the majority of bugs can be
discovered very quickly, and often programs are ready
for reassembly or recompilation within an hour or two
of check-out. The more difficult bugs, i.e. those taking
more than an hour to find, may take up to a day to
detect, and there have been one or two exceptions which
have taken longer. One we had about four months
ago, in a very large program, could not be tracked down
by desk methods and eventually had to be solved on
the machine by sub-dividing the program until the error
was isolated. This took about 44 hours machine time.

One software burg caused some annoyance. This was
a bug in the report writer which was not discovered for
some time. The programmers found that they could
exploit the system to get a special format in their output.
However, when the bug was discovered and corrected
the report writer worked as specified, but we had several
disgruntled programmers who had to alter their pre-
viously “‘clean’ programs.

In the early days, before experience of Argus patching
was gained, programs were repeatedly recompiled, but

106

this is very expensive in machine time. We now resist
recompilation as much as possible, unless there is no
alternative, as in the case of major structural errors.

In general we have found that debugging is not
difficult. The Argus listings which include remarks
and comments are invaluable, and the Program Test
System has been of great use in checking out programs.
The Thor system has virtually eliminated the need to
write magnetic-tape testing programs. One lesson we
have learned is to break our systems down into the
smallest possible programs. In the early days we wrote
some big comprehensive programs some of which, after
many attempts to make them fit into the core store or
get them clean, we abandoned and split into two or
more. Small programs take much less machine and
debugging time, particularly when a simple change
becomes necessary, and there is no problem in running
them later under the executive system.

Of all the bugs found it is estimated that about half
were errors in systems or logic. Of the remainder 559%
were casual errors, 309, due to misconceptions and
abuse of the compiler, etc., 109, were due to exceeding
memory capacity, misuse of hardware, wrong operation
or wrong specifications, and the remaining 59, were
due to mis-compilations, including bugs in the compiler.

Problems arising during compilation

There have not really been any problems other than
those of inexperience in the use of the language and in
operating the computer.

The bugs in the compiler have not caused difficulty
in compilation, but only in finding out why the compiled
programs would not work.

One small problem is that it is not possible to know
for certain whether a program is likely to be too big to
fit in the core store, until it has been compiled. As we
have learned our lesson with big programs this does not
trouble us now.

Satisfactory and unsatisfactory features of the object
program produced

Satisfactory

We have found that correct object programs can be
produced very quickly, and they are efficient to the
point that peripheral units normally operate at full speed.

Sorting and updating programs are highly efficient,
procedure statements convert with high efficiency, and
it is very doubtful if a skilled machine-language pro-
grammer could improve on any of these.

Unsatisfactory

It is very easy to use so many facilities that the object
program is cumbersome and slow.

File-handling programs written by unskilled pro-
grammers may run at less than magnetic-tape speed,
and in general, the input-output routines err on the
side of over-checking. Discretion is needed in the use
of the report writer in particular. We know that
redundant or only marginally useful coding is generated

$202 YoJe\ ¢ uo 3senb Aq G| LGEE/Y0L/Z/L/e1oMe/|ulwoo/woo dno ojwepeoe//:sdiy wolj pepeojumod

due to the general nature of the routines, but have not
yet had time to establish the full extent of this. It is
estimated that the average is of the order of 209%;.

Development times for projects are longer than had
been hoped, and FACT is very heavy on machine time.
There are exceptions; some programs have been deve-
loped very quickly, but during the learning period pro-
gress has been discouraging.

We are very concerned about the cost of making even
minor alterations to a program after it is working.
Even in the best regulated circles minor systems changes
are necessary, and in a dynamic organization where
improvements are constantly being sought, changes
could well be frequent. FACT enables the changes to
be made easily and in a comparatively short elapsed

FACT

time, but the cost in machine time can be considerable.
This is a problem we shall soon have to face.

In conclusion, although we have had a very trying
time since last October, we have got over the learning
period and are convinced that FACT is a most powerful
language, and the debugging facilities are excellent.

We now know the weaknesses and the pitfalls to be
avoided and shall plan future jobs accordingly.

We also intend to set up a small team to investigate
the unsatisfactory features with a view to improving the
efficiency of the object programs.

One point may be of interest, whenever anything goes
wrong the first reaction is that it is either the program
or the operator at fault—never the machine or the soft-
ware.

Book review: Computer organization

Workshop on Computer Organization, Edited by ALAN
A. BArRNUM and Morris A. KNAPP, 1964; 242 pages.
(London: Cleaver-Hume Press Ltd., 72s.)

This book is largely concerned with the unconventional for its
own sake. Eight papers and subsequent discussions have
been reproduced from a conference held in October 1962 in
Baltimore, Md.

Two main types of machine organization interest the par-
ticipants. One is the array of active computing elements,
each with its own data store, obeying the same instruction
stream from a single control unit. This is exemplified by the
SOLOMON computer in Chapter 2 (D. L. Slotmick et al.),
of which a fuller account will be found in Proceedings of the
F.J.C.C. 1962; also (in Chapter 3) by a form of matrix organi-
zation using optical logic with which readers of The Computer
Journal, July 1963, will be familiar. The main application
is to the sort of numerical problem which is naturally repre-
sented on a (rectangular) grid of points, at each of which vir-
tually the same calculation has to be performed, using num-
bers associated with the point, with its neighbours, or with a
“common” pool of parameters. There are two sorts of
“edge effects” which arise: one from those points represent-
ing the physical boundaries of the problem, the other from
the limits of the computing grid, on which the problem is
represented by successive overlays. To handle such special
cases a form of modal control is introduced, which allows the
activity of certain elements to be suspended while others
follow through a particular instruction sequence. Obviously
the fewer “computer edges” the better. SOLOMON has
1,024 computing elements, and on a selection of suitable prob-
lems a performance gain of around 100:1 is claimed in com-
parison with a “conventional computer.” It can also be
seen that this organization may be applied to any calculation
which has to be repeated many times with slowly changing
parameters—slowly changing in the sense that not too many
elements will be held up waiting for the last one to go a few
more times round a loop. Numerical problems can conceiv-
ably be found to satisfy this requirement, and a computer
system with a modest number of elements built to process
them economically. It is interesting to enquire whether simi-
lar situations could be found in data-processing work; on the
whole the chances of doing so seem slimmer—the transition
between “M” and “F,” for example, is usually taken rather
abruptly.

107

Thus the second form of organization requires a multipli-
city of control elements, each following its own sequence of
instructions, sharing access to data in such a way, one hopes,
that an effectively determined calculation is performed. The
model taken here for such systems is the Iterative Circuit
Computer or Holland machine (see the articles by J. H.
Holland in Proceedings of the E.J.C.C. 1959 and Proceedings
of the W.J.C.C. 1960 for up-to-date accounts of this class of
machines). I am not sure whether they fulfilled Holland’s
original purpose, but as starting points in computer design
they are rather like skyscrapers without lifts, corridors or tele-
phone systems, taken as starting points for office accommoda-
tion. Two of the chapters (4 and 5) in the book and much of
the discussion are taken up with, yet nearly miss, this point.
When the (blue) sky’s the limit there is surely no harm in
taking the few steps necessary to get a sensibly programmable
system.

The remaining papers offer adjuncts to mainstream pro-
gramming rather than radical departures. Chapter 1 (D. P.
Adams) suggests a mechanization of nomograms, with count-
able bits on a magnetic or photographic recording replacing
the numerical scale markings. It is not clear why this is
being attempted, since it appears to offer no advantage over
conventional approximation and interpolation techniques.
Chapter 6 (G. Estrin er al.) describes briefly the efforts being
made at U.C.L.A. to devise systematic ways of enhancing the
performance of a conventional computer by attaching special-
purpose computing elements to work in parallel with it.
Chapter 7 (G. J. Culler) outlines a Man-Machine Communi-
cation system which sets the fingers twitching, if not the
brain. Finally, the paper by N. S. Prywes and S. Litwin
describes a design for a computer capable of processing data
organized in a generalized form of list structure.

On the whole, therefore, a very disappointing contribution
to this interesting field. At least some of the participants
seem to have felt the same way, and Professor Pasta leads in
with some politely searching questions. It is a little surpris-
ing to find exactly the same searching 100-word question on
p. 173 as on p. 149, and the verbatim style only heaps on the
confusion. There are many errors which one would have
expected the editors to notice, but I think the prize goes to
the peripatetic (yet powerful!) ‘“touring machine”” which
appears briefly on p. 211.

J. K. ILIFFE.

$202 YoJe\ ¢ uo 3senb Aq G| LGEE/Y0L/Z/L/e1oMe/|ulwoo/woo dno ojwepeoe//:sdiy wolj pepeojumod

