Initial users’ reactions: What do they really want?

By H. D. Baecker*

Commercial autocodes or source languages are contrasted with machine assembly codes. Ten
factors that affect the overall efficiency of a data-processing system are listed and examined to
discover how the use of a commercial autocode will affect them. This paper was presented to the
B.C.S. Symposium on Practical Experience with Commercial Autocodes held in London on

25 March, 1964.

My own reactions to users’ reactions to commercial
autocodes are coloured by my experience as a translator
writer. Different users require different things from the
commercial autocodes that they wish to employ, but
unfortunately they are, on the whole, ignorant of the
cost of providing the facilities that they demand on the
equipment that they are prepared to pay for.

To take a specific example, let us consider two users
of the same commercial source language who require it
to serve very different purposes. One user has required
the translator to generate fast and compact object pro-
grams that would have to be run several times daily.
The time of translation is relatively immaterial because
of the intensity of use of the translated product. This
user wished to use a commercial autocode, rather than
the machine assembly code, because he is in the throes
of establishing an integrated system of accounting and
production control, and he values the advantages of a
common language for the expression of office procedures
that also relates closely to their transfer to machine
processing. The discipline of documentation of the
source language is also expected to ease the problems
arising from staff changes in all departments associated
with the system.

The second user looks to a commercial autocode for
the speedy solution of ad hoc problems of analysis of the
company’s activities. For this translation time must be
minimal, and it must be an easy and quick task to modify
source programs. Because a given object program is to
be used rarely execution time is of less importance, being
overshadowed by translation and program-testing time.
Thus efficient facilities for the latter are of great
importance. The major saving anticipated is, of course,
in the writing of the many diverse programs in the
first place.

Both users share a reluctance to invest in a large
machine configuration, particularly of input/output
units.

Desirable features

Certainly these examples are not unique. We may
compose a profile of the desirable features of a com-
mercial autocode. It is impossible, as yet, to describe
an ideal standard, one can only contrast different methods
of arriving at the same objective, a computer run that
will process given inputs to produce the desired outputs.

A great deal of the present enthusiasm for com-
mercial autocodes in the U.K. stems from past exper-
ience of extremely rudimentary program coding schemes.
Unfortunately there are current-generation computers
being marketed here with assembly codes and operating
systems that are more primitive, that offer less flexibility
and fewer facilities, than the assembly codes and asso-
ciated loaders that were common in the U.S.A. almost
a decade ago. Virtues are therefore being ascribed
here to commercial autocodes without a basis for
reasoned comparison with adequate assembly systems,
because of the paucity of facilities of the assembly codes
we have had to suffer.

Nevertheless, let us try to state the important
advantages sought by the user:

(a) reduce program writing time;

(b) reduce the skill and experience required of pro-
gramming staff;

(c) reduce the skill and experience required of
operating staff;

(d) reduce program-testing time;

(e) reduce translation time;

(f) reduce object time machine use;

(g) reduce program-punching time;

(h) use a minimum machine configuration;

(i) enable translated programs to be altered in source
language;

(j) produce maximum documentation automatically.

It is immediately clear that whilst some of these
points may serve to assess the relative merits of different
commercial autocodes, others serve more to contrast
autocodes and assembly codes. Furthermore, there
are two further facets that enter into any assessment,
the characteristics of the translator of the language and
the characteristics of the operating system within which
translator and object program are embedded. Let us
consider the above points in more detail.

(@) A commercial autocode should certainly score
over any assembly code in the speed of writing
programs, but the relative merits of various auto-
codes will depend greatly on the complexity of
the task attempted by the user.

(b) The use of an autocode will reduce the demands
made on the skill and experience of programmers,
in contrast to an assembly code. The relative

* Computer Analysts and Programmers Limited, 62/63, Queen Street, London, E.C.4.

$202 IMdy 61 U0 3senb Ag 9ZLGEE/801L/Z/.L/e1o1e/|ulWwoo/wod dnorojwepeoe//:sdiy wolj pepeojumod

What do they really want?

flexibility and power of the available programming
languages is the feature that most distinguishes
between them, and so affects the difficulty of
programming. However, no language is going to
mitigate the difficulties of getting a quart-sized
job onto a pint-sized computer.

(c) A translator for a commercial autocode is not
necessarily easier to operate than an assembly
program; the reverse may well be the case. As
for object programs, in the particular circum-
stances of a given installation good programmers
using an assembly code may well devise and
implement a set of operating conventions far
easier to observe than the generalized facilities
built into high-level language systems. But no
operating system allows for any complacency on
this score, nor for the employment of unskilled
or careless operators.

(d) It would be a very bad autocode indeed that did
not significantly reduce the testing time of a
major program, compared with that program
written in an assembly code. Still, good pro-
grammers in any programming language will do
better than indifferent staff using the same language.

(¢) A commercial autocode will prove very expensive
in translation time. One hopes that ease of testing
will reduce the number of translations required in
all, compared with assemblies, and so the total
machine time used will be decreased.

(f) Similarly, the object program resulting from a
source program in a commercial autocode will
not be faster than that program written in
assembly code by a competent programmer. It
will usually be appreciably slower. This is sad,
but arises from the generality of the facilities
incorporated in autocodes; translators cannot
yet be structured to take advantage of local
restrictions to increase efficiency in the way a
program tailored by hand can. Often users are
to blame for some of this inefficiency because they
look with disfavour on a source language that
requires explicit declarations of restrictions; if
the latter are incorporated then translation could
be far more efficient.

Note that both of the above points (¢) and (f) are as
much connected with the translator used as with the
autocode language to be translated. Thus two different
translators for the same source language on the same
machine may give very different results.

(g) Reduction in punching time will depend not on
the autocode but on the operating system within
which it functions. Either a commercial autocode
or an assembly code may have or fail to have
facilities for machine amendment of chosen por-

109

tions of the source text, and it is this facility which
will provide savings.

(h) The more facilities and flexibility that are provided
in the translator for a commercial autocode the
more equipment it is likely to use during operation.
In particular it will use more magnetic-tape
working files, or equivalent bulk storage, than the
assembly code on the same machine, and the
faster the process of translation, or the greater
the attempt to optimize the resulting object pro-
gram, the more hardware the translator will
demand.

(i) For large programs the facility to alter translated
programs in source language is very important.
Again, this facility is not a property of the source
language but of the translator. However, to
achieve this end the translator must preserve all
sorts of tables and general parameters that arise
during the course of translation, if the amendments
are to be translated correctly and related properly
to the existing part of the program. This facility
will therefore sharply increase the equipment
required to run the translator.

(j) The programmer in a commercial autocode must
define his data structures, as well as his procedures,
explicitly. Thus an autocode will provide a
clearer statement of the proposed operations, in
a “problem orientated”” manner, than an assembly
code, and so will provide some documentation
automatically.

Software economics

Finally, let me draw attention to a very obvious but
oft forgotten fact. Software is not supplied free by a
manufacturer. He must recoup the cost of developing
commercial autocodes and other programming aids
from the sale of hardware. But because software is an
implicit charge it is difficult for the customer to assess
whether he is receiving value for money. He can only
assess the total system of hardware and software.

If users feel dissatisfied with the software offered to
them, then there would seem to be grounds for requiring
manufacturers to distinguish more clearly between the
costs of the hardware and software that they supply.
A further step might then be an option to buy hardware
with only limited software, leaving it to an association
of users to specify and implement their own software.
This has often been done with universities and similar
establishments. Unfortunately the result would hardly
be an integrated operating system, but the individual
translator writer can hardly fail to welcome the prospect
of users becoming intimately aware of the costs and
difficulties of providing the programming aids for which
they clamour.

$202 IMdy 61 U0 3senb Ag 9ZLGEE/801L/Z/.L/e1o1e/|ulWwoo/wod dnorojwepeoe//:sdiy wolj pepeojumod

