The FORTRAN system for Orion

By R. Taylor and D. A. Harragan*

The Orion FORTRAN system allows the compilation, assembly, and editing of programs written

in FORTRAN or a symbolic assembly language.

As it is not the first FORTRAN system ever

written, most of the programming for it was done in FORTRAN. Great attention is paid to the
needs of non-specialist programmers.

1. Introduction

The Rutherford High Energy Laboratory of the National
Institute for Research in Nuclear Science exists to meet
the needs of nuclear and high-energy physicists, many of
whom are visitors from other similarly equipped labora-
tories. Their needs therefore include a computing instal-
lation which provides a powerful and easily accessible
FORTRAN system offering compilation of FORTRAN
subprograms, assembly of precompiled and newly com-
piled subprograms together with necessary library rou-
tines, correction of programs, and extensive debugging
facilities at execution time. The FORTRAN Master
Program (FORMAP) has been designed to supply these
features, and is now running on the Rutherford Labora-
tory ORION computer, which has a 16K core store, a
32K-word drum, 7 magnetic-tape decks, three paper-
tape readers, two paper-tape punches, and a line printer
but no punched-card equipment. FORTRAN uses
about 12K of core, 22K of drums, 5 decks, a reader and
a punch, and the printer. Care has been taken, both in
formulating the source language and in writing the com-
piler which implements it, to offer guards against the type
of mistake, at compilation time and execution time, which
seem commonly to beset FORTRAN users, many of
whom are not professional programmers. Extensive
use has been made of OMP, the Orion Monitor Program
which is supplied as software with the machine.

2. Alleviation of programmers’ difficulties
(a) At compilation time

Our observation shows that FORTRAN programmers
have trouble with the following points:

(i) Storage Allocation. To help here, we have re-
formed the EQUIVALENCE statement so that
only one identifier (at most) in an equivalence set
may be declared COMMON. If there is one, the
other members of the set also go into COMMON.
EQUIVALENCE statements never re-order
COMMON, the layout being governed solely by
the order in which identifiers occur in COMMON
statements, and by the associated DIMENSION
statements.

(ii) Mixed-mode arithmetic expressions.
these.

(iii) Input and output statements, and FORMAT.
Some FORMAT checking is done at compilation,

We allow

to reduce the chances of the library input/output
routines having to report trouble at execution.

Understanding the error diagnostic messages pro-
duced by the compiler. The first pass of the
compiler always prints the source program
together with a reference number for each state-
ment. On discovering an error, it prints a
message immediately beneath the line in which it
was found, pointing when possible to the column
containing the offending character. Error
messages printed during the second pass give the
reference number of the faulty statement, and the
third pass, in which storage assignment is worked
out, mentions by name identifiers whose alloca-
tions are ill-defined. An Error Book explains in
detail the meanings of the printed error messages.

(iv)

(b) At execution time

We decided that such events as attempts to evaluate
square roots or logarithms of negative numbers, to mis-
handle peripheral equipment, to continue computation
after floating-point overflow has occurred, should not be
allowed to pass undetected. Instead, all library routines
have been written so that the presence of illegal operands
calls in a special utility routine ERRORTRACE which is
always assembled into the program. This routine prints
on the control desk monitoring Flexowriter a message
containing the job-name, the name of the offended lib-
rary routine, the nature of the error, and a back-track
list of routine names showing the flow of control by which
the library routine was entered. ERRORTRACE is also
entered when a data tape contains punching which con-
flictswith FORMAT or contains illegal characters. If the
programmer has made an AFTER ERROR statement
(see below, Section 3.5) ERRORTRACE then passes
control to the nominated routine. The default action
is to call the library routine EXIT, which, however, does
not abolish the program but halts it in a re-runnable
condition, and so informs the operator.

More detailed debug printing can also be obtained.
Each subprogram is compiled with a routine entry trap
which may be activated by the operator depressing a key
on the control desk. (This has obvious difficulties for a
time-sharing machine like ORION, but the difficulties are
for the operating staff, not the programmers.) When the
trap is switched on, the program halts on the next sub-
program call, asking the operator to nominate a sub-

* Rutherford High Energy Laboratory, Chilton, near Didcot, Berkshire.

114

¥202 IMdy 61 U0 3senb Aq GOLGEE/Y L L/Z/L/e1o1e/|ulwoo/wod dnorojwepeoe//:sdiy wolj pepeojumod

FORTRAN system for Orion

program. It then prints the names of all subprograms
which it enters, until the nominated one is met, when it
halts again. The operator can then ask for OMP moni-
toring, e.g. printing out successful jumps and the contents
of specified regions of core or drum stores. Thus the
dynamical effects of a suspect subprogram can be found.

3. The FORTRAN Source (Orion) Language FORSOL

In specifying this language the following facts, most
of which conflict with each other, had to be taken into
account:

(a) FORSOL should not depart from the widely

known FORTRAN II.

(b) Many Orion programs may ultimately be run on
Atlas.

(¢ FORTRAN 1V differs in some details from
FORTRAN II and may become equally widely
accepted.

(d) The Orion hardware imposes certain restrictions.

(e) A working system had to be ready when the
machine was installed.

(f) The language had to be describable to non-
specialist programmers.

Points (a), (b), and (¢) involve a consideration of the
dialects of FORTRAN, a subject well covered (except
for Orion) by I. C. Pyle in Comm. of the A.C.M., Vol. 6,
No. 8, p. 462, August 1963.

Points arising from (d) were easily settled. SENSE-
LIGHT and SENSESWITCH are illegal. IF ACCU-
MULATOR OVERFLOW, IF QUOTIENT OVER-
FLOW, and IF DIVIDE CHECK were all made equi-
valent to a new form IF OVERFLOW.

The main consequence of (¢) was that Arithmetic
Statement Functions were dropped. Instead program-
mers have to write function subprograms, which in any
case are more general and if wrong can be individually
recompiled.

The above disposes of the ways in which FORTRAN II
programs might fail on Orion. The remaining features
of the language were fixed only after considerable
thought. Usually we gave greatest weight, when con-
sidering some proposed incompatibility, to the intentions
of our colleagues at A.E.R.E., Harwell, who were at that
time specifying the dialect of FORTRAN to be used on
Atlas. Fragmentation of a symbolic programming lan-
guage into dialects is a serious evil for programmers, but
we believe that the FORSOL dialect will allow many
FORTRAN II programs to run unchanged on Orion, and
many FORSOL programs to run unchanged on Atlas.
The incompatibilities are intended to be of use in programs
which will only run on Orion, e.g. programs which handle
massive data streams coming from the Direct Data Con-
nection by which Orion is attached to nuclear physics
measuring equipment. Thus there are several open
standard functions for performing shift operations, which
on another computer would simply have to be supplied
as function subprograms of the same name. One can
also incorporate machine-language instructions, but this
of course destroys all possibility of compatibility.

115

A full specification of FORSOL cannot be given here,
but the following survey may indicate some of the ways
in which FORTRAN has been generalized.

3.1. FORSOL allows the use of integer expressions
as control parameters, e.g. as DO limits and steps,
and as the index of a computed GO TO.

3.2. Arrays can have arbitrary dimensionality, and
each subscript can be an arbitrary integer ex-
pression.

3.3. Modes LOGICAL and TEXT have been intro-
duced, which permit single-word variables to be
set to arbitrary bit-patterns or Hollerith character-
strings. LOGICAL variables may also be equa-
ted to arithmetic relations, in which case they
assume one of the values .TRUE. or .FALSE..
Such variables (and relations) can be combined
be the operators .AND., .OR., .ER., and
.NOT. to form a logical expression.

3.4. An alternative (not compulsory) form of IF has
been introduced:

IF (logical expression) n;, n,
which sends control to statement #, if the expres-
sion is . FALSE., otherwise to n,.

3.5. AFTER ERROR SUBR defines SUBR as the

restart routine after ERRORTRACE.

4. Efficiency of implementation

As usual with FORTRAN compilers, common sub-
expressions within one statement are evaluated once only.
Division by floating-point constants (surprisingly common
in FORTRAN programs) is converted to multiplication
by the reciprocal constant. X**2 becomes X*X; other
exponentiations invoke library functions. The common
case of an IF statement having the next statement as one
or two of its successors is dealt with economically.

Subscripts receive rather novel treatment. Subscripts
involving non-linear expressions in variables are evaluated
when met, and no attempt is made at simplification;
repetitions within one statement are detected. It is the
ideal of many FORTRAN compiler writers to reduce
the treatment of linear subscripts to evaluation at points
of definition only, together with incrementation within
DO loops. We felt that after perhaps an extra man-year
we could have produced such a compiler, which would be
half as fast as our present one, although object programs
would bemore efficient. Furthermore, observation shows
that many FORTRAN programmers use only the sim-
plest possible form of variable subscript, as in X(N + 3).
Now our arithmetic compiling routines frequently want
to compile an instruction in which one or both of the
main addresses must be modified not by the contents of
an index register but by the contents of the register indi-
cated by the appropriate address of the preceding instruc-
tion. If this is simply an integer variable, it need never
be loaded into an index register at all. Accordingly we
recognize such modifiers and refrain from copying the
variable to an index register until the context shows this
to be necessary.

¥202 IMdy 61 U0 3senb Aq GOLGEE/Y L L/Z/L/e1o1e/|ulwoo/wod dnorojwepeoe//:sdiy wolj pepeojumod

FORTRAN system for Orion

Even complicated linear subscript combinations are
simplified as much as possible; thus X(2*N*3 - K *4,
M —N) is recognized to mean the same, within one
statement, as X(4*K 4 6*N, —N + M).

S. The assembly languages FALAN and FAMAP, and
the assembler

FALAN is not the language into which the compiler
translates, but an assembly language by means of which
the programmer can write subprograms using all the
facilities of the Orion Machine Code. It allows cross-
references between FORTRAN-compiled routines and
other FALAN routines, and permits the use of symbolic
identifiers, symbolic labels, and label-setting equations.

FAMAP is the compiler output language, consisting of
subprograms in relocatable binary plus 3 relocation maps
per subprogram, one for relocation within a subprogram,
one for relocation between subprograms, and one for
relocation of the entire program. The Assembler can
work out all the relocation (supplying any needed library
subprograms), determines core and drum requirements,
and incorporates a Utility Region into each complete
program. This region contains the routine ERROR-
TRACE, the routine CHAIN (the chapter-changing
sequence), an entry pseudo-chapter, and several entry-
points by means of which a program can be re-entered,
after a halt, at the beginning of the main-level program
of any chapter. The input and output buffers for the
compiled program are also laid out here. The Assem-
bler output for each chapter may be to drum or magnetic
tape, as directed by the programmer. A program which
is not to be kept in absolute binary will also be automati-
cally supplied with a short loader routine, written in the
Orion Basic Input language.

6. The user’s view of the system

It was felt that neither punched cards nor punched
paper tape were the ideal medium for storing large multi-
chain FORTRAN programs in which scattered sub-
programs occasionally need recompilation. Accordingly
the FORTRAN Master Program was designed so that
the only paper tapes the programmer need handle are
those containing his subprograms in FORTRAN, or in
FALAN if he needs machine coding for a particularly
crucial operation. The compiled routines are held in
FAMAP on a magnetic tape which belongs to a pro-
grammer, and on which he can keep the FAMAP versions
of several programs. The Assembler can convert such a
program into a relocatable binary program held on a
public magnetic tape containing many such programs, or
into relocatable binary or absolute binary on a private
magnetic tape. These tapes never leave the machine

Reference

room. The FORTRAN system printed output includes
information telling the programmer the code-numbers of
these tapes and what subprograms they incorporate.

Editing facilities are available whereby the programmer
can direct that subprograms be deleted from his tape, or
be replaced by new ones of the same name coming in via
the FORTRAN of FALAN languages or both, or be
supplemented by entirely new subprograms.

Load-and-go facilities have not yet been provided. It
is thought that the FORTRAN system works most effi-
ciently when processing a steady stream of jobs without
interruption for execution, which in many cases would
involve re-loading one or more tape decks, an operation
whose time is measured in minutes because FORTRAN
needs 5 of the 7 tape decks, of which one is usually re-
garded as being unavailable owing to maintenance re-
quirements. To obtain execution, the programmer
simply has to supply a short length of paper tape defining
his job name, his peripheral requirements, and estimated
running time.

7. Writing FORTRAN systems in FORTRAN

The greatand often unappreciated power of FORTRAN
as a data-processing language is illustrated by the
fact that the greater part of the Orion FORTRAN System
was actually written in FORTRAN. The first version of
the FORTRAN compiler was written in FORTRAN II
together with a few routines in FAP. It was executed on
an IBM 7090 and produced an object program on punched
cards which were converted to paper tape and read
into Orion. This FORTRAN II version accepted
FORSOL as source language. Next, a new version of
the FORTRAN compiler was written in FORSOL and
compiled by version 1 on the 7090 so that then we had a
version which would work inside Orion, and which could
be used to generate improved versions of itself. This
process is still continuing, the recently completed editing
feature greatly facilitating the whole procedure. At
present the compiler puts out about 350-400 machine-
language instructions per minute. The Assembler is so
fast that time estimates are difficult.

8. Acknowledgements

We wish to acknowledge the great assistance and co-
operation we have had from Mr. C. S. L. Atkinson (who
planned most of pass 2 and pass 3 of the original compiler)
and Mr. R. Wilson, who were both at that time with
Ferranti Ltd.; from Dr. I. C. Pyle, Mr. E. B. Fossey,
Miss B. Stokoe, Mr. P. Bryant, and Mr. R. MacLatchie
of A.E.R.E., Harwell; and from our colleagues at the
Rutherford Laboratory, Mr. J. W. Gardner, Mr. P. A.
Denny, and Mr. D. J. Wagon.

—(October, 1963). A Primer of Fortran Programming for use on Atlas and Orion Computers (based on work done by teams at
AERE, Harwell, and Rutherford Laboratory, Chilton), published by I.C.T. Ltd., 68 Newman Street, London, W.C.2,

Reference list C.S. 390.

116

¥202 IMdy 61 U0 3senb Aq GOLGEE/Y L L/Z/L/e1o1e/|ulwoo/wod dnorojwepeoe//:sdiy wolj pepeojumod

