Note on timing simulation of a large asynchronous computer

By R. L. Chew*

An Autocode program was written for a small computer to simulate the overlapping instruction
process of the large Atlas 2 computer, for timing purposes as an aid in design work and in preparing
The note describes the techniques used in writing this program and its applications.

tenders.

An Autocode program has been written for the small
Sirius computer to simulate the more important features
of the overlapping of instructions on Atlas 2, a large
computer designed by Ferranti Limited in conjunction
with Cambridge University, the first model of which is
now installed at Cambridge University. An urgent
need arose for a program to simulate the behaviour of
sequences of basic Atlas 2 instructions. This informa-
tion was required for estimates of times for various
documents and tenders, for basic programmers designing
the most efficient loops, and for the assessment of the
effects of possible improvements in design. Through
discussions with design engineers a lattice was drawn
to show the main events occurring in the basic circuitry
governing the overlapping of instructions.

Fig. 1 is a simplified version of the lattice used for the
timing program and gives the configuration of only the
main events occurring in the overlapping of three instruc-
tions. Events are represented by circles; each arrow
vector represents the minimum time which must elapse
between two events. Other time delays, not shown,
that must precede certain events are ““accumulator busy”
hold-ups, “index register busy” hold-ups and ‘“‘core
store busy”’ hold-ups.

An important factor in the overlapping of instructions
in Atlas 2 is that the core store is divided into four
stacks each of which may be accessed independently;
the stacks are interleaved so that any four consecutive
locations belong to different stacks, thus setting no
effective limit to the rate at which successive instructions
may be extracted. Also there are 40 extremely fast-
access registers constructed of tunnel diodes. In 32 of
these, hereafter referred to as the slave store, loops of
instructions are automatically stored while they are
obeyed, and any loop of less than 64 instructions benefits
from this facility. The remaining 8 registers are pro-
vided for use as fast working space. These 40 registers
are accessed independently of the main core-store stacks.
Some of the delay times used in the lattice are variable,
depending upon whether or not an instruction is in the
slave store or its operand in one of the eight fast registers.

A description of the program follows showing how a
sequence of Atlas 2 basic instructions is represented for
input to the timing program, and how time is stepped up
as the instructions advance through events in the lattice.

* I.C.T. Limited, 21, Portland Place, London W.1.

122

ORequest
Instruction

ya
/
Request
+ Operand
O—_
NInstruction
Ready
Y e Operand N J’ Instruction
OL_Ready O\Decoded
JRequest
’ Instruction
Request
eques
O Operand 4 ‘L Instruction
/ Ready
Olnstruction
Completed
Ox/ Operand | DInstruction
Ready Decoded
/
5
N .
Olnstructlon
Completed

Fig. 1.—Lattice showing configuration of three overlapping
instructions

¥202 YoJe\ g1 uo 1senb Aq v0ZGEE/2Z L/2/L/e1o1e/|ulwoo/woo dno ojwepeoe//:sdiy wolj pepeojumod



Timing simulation

First the delay times are read in as parameters; these
may easily be varied. A sequence of instructions is
then read in as follows:

1. An identifying number.
2. The number of instructions in the sequence.
3. A representation of each instruction.

The identifying number of a sequence will be printed
out with the time for that sequence. There is no limit
to the number of instructions in one sequence. Each
instruction is then represented by five integers indicating:

1. Whether or not it is a jump (this type cannot be
overlapped).

2. Where the instruction is stored, i.e. in a stack of
core store or in the slave store.

3. The number of index-register modifications, if any.

4. Where the operand is stored, i.e. in a stack or in a
fast register.

5. The type of function.

Upon entering the program, the registers holding the
times for “‘accumulator busy” periods and for stacks of
“core store busy” are set to zero. -Real time T, is set
to zero as the first instruction is requested. A delay
time, depending upon where the instruction is stored,
increments 7" in nanoseconds to the point ‘“instruction

ready”. Next, T is incremented by the time appropriate
for instruction decoding. Then there is a test for the
instruction being a jump, in which case it must be com-
pleted before the second instruction is requested. Other-
wise, from this point a separate path is followed for each
instruction, real time being represented by two variables;
at each event it is ensured that the appropriate delays
have elapsed. When ““instruction decoded” is reached
for the second instruction, as before, a test is made for a
jump instruction. If this too is not a jump, overlapping
for three instructions is now under way.

This process continues until all the instructions in the
sequence have been completed. Two more iterations
through the sequence are completed to ensure a con-
sistent pattern. The time taken to complete the sequence
of instructions is calculated thus: a record of time T
stored at the end of the second iteration is subtracted
from the value of T at the end of the third iteration, and
is printed out in microseconds with the sequence identi-
fication number.

The simulation program was written in a period of two
months and is now proving very useful in timing loops
involved in supervisory control routines; also it is helpful
in estimating the effects of different core-store cycle
times and of varying accumulator speeds in performing
arithmetic operations.

Obituary

It is with deep regret that we announce the death, after a
long illness, of Dr. C. B. Haselgrove on 27 May 1964. He
had been chairman of the Manchester Branch of the British
Computer Society for a few years until prevented by ill health.

Brian Haselgrove was educated at Blundell’s and King’s
College, Cambridge. He was a Research Fellow at King’s from
1950 until 1956. He first became interested in computers in
the later 1940’s. In 1947, while a vacation student, he worked
on the design of EDSAC 1 at the University Mathematical
Laboratory. Later he joined the senior staff of the Labora-
tory and played a major part in its teaching work and in the
use of the EDSAC.

In 1957 he became Senior Lecturer in Computing in the
Mathematics Department at Manchester University. There he
helped to start a post-graduate Diploma in Numerical Analysis
and also one of the first undergraduate courses in which

123

computer programming was taught. From the earliest, he
was aware of the significance of computers to mathematical
problems, both pure and applied. He was interested in any
branch of the subject which could be tackled by a machine
and he did work on number theory, Monte Carlo methods,
stellar evolution, radio waves in the ionosphere, non-linear
programming and many other topics. He served on the Royal
Society’s Mathematical Tables committee and in 1960 he
published tables of the Riemann Zeta function with J. C. P.
Miller.

In his 7 years at Manchester he has fully or partly super-
vised about a dozen research and diploma students all of
whom will remember him with admiration and affection.

The Society extends its sympathy to his widow and son for
what, to them even more than to us, is a tragically early loss
at the age of 37.

¥20Z YoseN ¢ uo 1s8nb Aq £0Z5E€/2Z1L/2/ /8101 e/ uloo/wod dno-ojwapeoe//:sdiy woyy pepeojumoq



