A computer technique for game-theoretic problems

I: Chemin-de-fer analyzed

By F. G. Foster*

A numerical technique will be described for solving a class of N X 2 matrix games, where N is
very large. The method of computing the value of the game of chemin-de-fer and the results of a
computation carried out on the Atlas computer will be presented.

1. The theory of games

Game theory considers situations in which there are
two (or more) competing persons whose actions influence
but do not individually (or possibly jointly) completely
determine the outcome of a certain event. Depending
on the outcome, the players receive certain payments.
If in the case of two players for each possible event one
player wins exactly what the other loses, the game is
called a two-person zero sum game, or simply a matrix
game.

Usually the players will not agree as to which event
should occur, i.e. their objectives are different. The
question then arises for each player as to what his best
actions are in the various situations in the game. In
the case of a matrix game, game theory provides a
solution, based on the principle that each player tries
to choose his course of action so that, regardless of what
his opponent does, he can assure himself of a certain
amount.

Many games of strategy like chess, bridge or poker
can be translated into the form of matrix games. Let
us take first a very simple example.

Each of two players A and B hold up simultaneously
either one or two fingers. A pays B an amount equal to
the total number of fingers shown. The game can be
depicted in matrix form

12‘3

11@}4

B

The elements show the pay-offs to B. The game is zero-
sum, since A loses what B wins. How should the players
play this game?

If A plays the first column, he loses 2 or 3. If he
plays the second column, he loses 3 or 4. Obviously, he
will play I. If B plays the first row, he wins 2 or 3, if
he plays the second row he wins 3 or 4. Thus he will
play II.

We call “play I” or “play II” a strategy. Thus I is
A’s optimal strategy and Il is B’s optimal strategy. By
playing I, A assures himself of a loss of at most 3. By
playing II, B assures himself of a gain of at least 3. We
call 3 the value of the game, being the outcome when
each player uses his optimal strategy.

Note that 3 is the minimum of the row in which it
occurs and the maximum of the column.

Suppose the matrix were as follows:

A
I II
I{ 2 5
B
Imj 3 4

What are the optimal strategies ?

Clearly A must, if he is rational, choose I. Now B
would like to gain 5, but if he chooses I, he will surely
only gain 2. Therefore B will choose II. Thus the
optimal strategies and value of the game are as pre-
viously. Note again that 3 remains the minimum of the
row and the maximum of the column.

Such a game is called strictly determined if the matrix
contains an element which is simultaneously a row-
minimum and a column-maximum. This is the value
of the game. The game is fair if its value is zero.

2. Non-strictly determined games

Suppose the game were that A pays B one unit if the
number of fingers held up is the same, and B pays A if
they differ. Then the pay-off matrix to B would be

A
I II
I 1 |—1
B
II [—1 1

This matrix does not have any element which is a row-
minimum and a column-maximum. How should one
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Chemin-de-fer analyzed

play such a non-strictly determined game? Clearly no
one choice of strategy can be optimal. If A always
plays I, B will find this out and play I also. Similarly
with II. The answer is the players must randomize,
and adopt mixed strategies. By a mixed strategy is
meant a rule of the form: play I with probability /4 and
II with probability (1 — #). The value of h has to be
calculated on the basis of the given pay-off matrix. In
this particular example, obviously by symmetry A = 1.
For the general 2 x 2 pay-off matrix,

¢4,

the value of A will be computed by solving
v=ha+ (1 —hb=hc+ (1 —hyd

for h. The value of v is the value of the game. Geo-
metrically, we have to find the point of intersection of
two lines; as in Fig. 1.

The value of such a non-strictly determined game is
an expected value. v is the largest expectation of gain
that B can assure himself of, and likewise it is the
smallest expectation of loss that A can assure himself of.
The fundamental theorem of game theory is that any
m X n matrix game has a unique value so defined.
The corresponding optimal (mixed) strategy for either
player is called a minimax strategy.

3. N X 2 matrix games

If A has 2 strategies and B has N strategies, we get
an N x 2 matrix. Its value is obtained by looking in
turn at NC, pairs of lines, and obtaining the greatest
value in the NC, 2 x 2 matrix games.

An alternative procedure is to draw the piece-wise
linear curve below which all pay-offs for given A lie.
Let G(h, s) be the gain to B corresponding to 4 and to
B’s pure strategy s. Then the curve as a function of A
is given by

G(h) = max G(h, s).

The value of the game is given by the minimum point
on the curve. See Fig. 2.

The question arises as to whether this is a feasible
numerical method in practice to compute G(h) and its
minimum point. In fact, it turns out that it can be used
in certain cases where B’s strategies are such that they
prescribe for each of a number of situations one of a
small number of choices. Suppose, for example, there
are n situations in each of which there is for B a binary
choice. Then N =2". Now the gain for B following
any particular one of these for given A is very often
composed of additive components: in situation i the
component is either a% or a! depending on the binary
choice. Thus the total gain is

G(h,s) = & + a§? + .. + a

where (¢, ¢3,...c,) represents the strategy, s,

0 h 1

Fig. 1.—Graph showing the value v of a 2 X 2 matrix game
and the frequency 4 for A’s minimax strategy

(c; =0o0r1). Thus to compute max G(h, s) it is neces-
sary only to make 2n calculations by examining in turn
a? and a! and selecting the greater.

The method will be illustrated by a study of the game
of chemin-de-fer.

4. The rules of chemin-de-fer

There are two players, A and B, and B is called the
Banker. They are each dealt face-down two cards from
a deck consisting of 6 packs of playing cards. They
add the values of the two cards, and the resulting scores
constitute their initial score. The way in which the
values of the two cards are added is as follows. Addition
is modulo 10 and J, Q, K count as 10. Thus:

34+9=2
J4+7=17
10+7J=0.

0 b §

Fig. 2.—Graph showing the value v of a 3 X 2 matrix game
and the frequency 4 for A’s minimax strategy

¥202 I4dy 61 U0 3senb Aq 622GEE/Z L/Z/L/e1o1e/|ulWwoo/wod dnorojwepede//:sdiy wolj pepeojumod



Chemin-de-fer analyzed

A makes the first move. If A has an initial score of 8
or 9, he shows his cards, and B then also shows his
whatever they are. The player with the higher score
wins. If the scores are equal, they draw.

The stake is placed before the cards are dealt. We
can assume there is unit stake on either side which the
winner collects.

If A has an initial score of 0, 1, 2, 3 or 4, he must call
for another card, and he adds its value to his initial
score (again mod 10). It is dealt face up. If A has an
initial score of 6 or 7, he must not call for another card,
but stand. If A has a 5, he has to decide whether to
call or stand.

The Banker B is in a slightly different situation. He
observes A’s move, i.e. to stand or call, and if A calls,
he observes the value of the card dealt to A. He does
not of course know A’s initial score, but he does know
that if A calls he must have a 0, 1, 2, 3, 4 or 5, and if A
stands he must have a 5, 6 or 7. (If A had an 8 or 9 he
would have already declared his hand.)

The Banker B, with this additional information,
including of course a knowledge of his own initial score,
has to respond to A’s move. The rules are:

If B has 0, 1 or 2, he must call for another card.

If B has a 7, he must stand.

If B has 3, 4, 5 or 6, he has to decide whether to call
or stand.

If he has an 8 or 9 he turns up his hand, and wins the
game, unless of course A has already declared his 8 or 9,
in which case he wins or loses in accordance with the
rule given for A having 8 or 9.

5. The matrix game

Let us now translate this game specified by its rules
into a matrix game.

A pure strategy for a player is the complete set of
instructions which tells him what to do in every con-
ceivable situation that can arise in the game when he has
a choice. Thus A has only two pure strategies which are:

(1) Call on a 5.
(2) Stand on a 5.

For B, however, there is a very large number indeed
of pure strategies. Thus he must know what to do when
his initial point is j (3 < j < 6) and when he observes
A’s further move (of calling or standing) and if A calls,
the value of the further card drawn. Thus he himself
is in one of 4 different states, and he observes A in one
of 11 different states (standing, or drawing 0, 1, . . . 9).
Therefore, he has a choice in each of 44 different situa-
tions, and each is a binary choice: to call or stand.
There are, therefore, for B, 24 pure strategies (or
approximately 2 x 1013),

We can represent any one of these in the form of a
table. For this purpose denote (purely conventionally)
by “10”, the event that A stands. Then the moves that
B observes A make may be denoted by

1=0,1,2,...9,10.
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B himself is in state j = 3,4, 5 or 6. (In other states
he has no choice.) Thus a pure strategy for B might
be as given in Table 4. Let us consider now how we
might compute the value and optimal strategies for this
game.

6. Mathematical formulation

Denote by i A’s initial score. Then the possible values
arei =0, 1, 2,..,9. Denote by a; the probability of
an initial score of i. Denote by j B’s initial score. Then
Jj=0,1,2,..,9 with the same probabilities as for A.

Now the probabilities, a;, are easily calculated. For
example, an initial score i =0 is obtained with the
following combinations of points:

NO. OF FAVOURABLE

FIRST CARD SECOND. CARD COMBINATIONS
0 0 96 x 95
1 9 24 x 24
2 8 24 x 24
3 7 24 x 24
4 6 24 x 24
5 5 24 x 23
6 4 24 x 24
7 3 24 x 24
8 2 24 x 24
9 1 24 x 24

The total number of combinations = 312 x 311.
We have from the above

96 X 954 247 x 8 + 24 x 23
d = 312 x 311

595
T 4043
The other a;’s can be computed in a similar way. The
values are given in Table 1 to 10 decimal places.

Note that in the computation of the a;’s we retain
the accuracy of the assumption of sampling without
replacement of the first card of the pair. However,
since in the game of chemin-de-fer the cards are drawn
from a shuffled deck of six packs of 52 cards, there will
be negligible loss in accuracy in assuming sampling with
replacement in the further analysis of the problem. This
assumption will now be made, since otherwise the
mathematical formulation would be extremely complex.

Table 1

Initial score probabilities

i a;

0 0-1471679445
1,3,5,70r9 0-0949789760
2,4,60r8 00944842938
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Now let us denote by /, m the values of the further
points drawn by A and B respectively. If, as mentioned
in the previous Section, we denote conventionally by
“10” the event that A (or B) does not draw a third
card, then / and m take the range of values 0, 1, 2, . ., 10.
Denote by by, by, .., by the probability, conditional
upon drawing, of / (or m) taking the values 0, 1, 2, . ., 9.
Define b,y = 0.

The probabilities, ;, are also easily calculated. There
are 16 cards in each 52 which give a point of 0. There-
fore b 16
ore by = 5.
there are 4 cards in the 52. Therefore b, =

For any other point, /=1, 2,.., 9,
:3. These
values are given to 10 decimal places in Table 2.

We have seen that A has two pure strategies: to draw
or not to draw for a further point when his initial score
is 5. Let A mix his two strategies so that he draws with
frequency A.

Denote by p;; the probability that A’s further point is
1(0,1,2,..,10), given that his initial score is i. Define

s _ 0 forl=0,1,2,..,9
I'—1 forl=10.

Then we have
pu=2b, fori=0,1,...4
=hb;+ (1 —h)§,fori=>5
=38, fori=6,7,8,09.

Now denote by #%), the probability that B’s further
point is m when his initial point is j, when he observes
A’s further point of / and when he uses a certain pure

strategy, s. For such a strategy, s, there are two possi-
bilities for each pair of values j, /:
either %), =b, m=0,1,..,10
or =%, =35, m=0,1,..,10.

For any individual coup, i.e. play of the game, the
actual value of i, j, /, m determines the pay-off to B.
Denote this pay-off by f(i, j, I, m). Then fis defined by
the following rules:

The amount staked is one unit.
modulo 10.

Let all addition be

For j=8or9
f=—1 fori>j
=0 fori=j
=1 fori <j.

Forj #8or9
f=—1 fori=8o0r9%

orfori+1>j+m,i*8or9

f=0 fori+1=j+m,is*=8o0r9
=1 fori+1<j+m,i*8or9.

We can now write down an expression for the
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Table 2
Further point probabilities
1 by
0 0-3076923076
,2,..,9 0-0769230769

expected pay-off to B, G(h, s), expectation being taken
over all possible coups (i, j, I, m):
9 10 10

9

G(ha S) = Z Z Z 2 aipilajﬂ,l('ir)rlf(i’j’ I’ m)

i=0 j=0 I1=0 m=0

Note that this expression is linear in A, as it should be,
the only term involving A being ps;.

In theory, then, we should compute the expected
pay-offs for all possible strategies, s, putting » = 0 or 1,
in order to compute the N X 2 pay-off matrix. This
would not, however, be practicable for N very large
(as it is), and there are two respects in which the amount
of computation can be reduced.

(1) The first reduction results from the observation
that for any given A the total expected pay-off is additive
over the possibilities (j,/). Thus we can examine for
each (j, /) the results of B’s drawing or not drawing, i.e.
the result of substituting for =f), in turn b, and 3.
We select the greater of the two values obtained in this
way, and note this contribution to the total pay-off.
By doing this systematically over all (j, /), we obtain the
maximum pay-off and at the same time the pure strategy
that corresponds to this maximum pay-off.

The process may be repeated for a range of values of
h, to obtain graphically the piece-wise linear curve dis-
cussed in §3. Each point plotted on the graph represents
the maximum pay-off obtainable by B, and corresponding
to it the strategy is recorded. It is a simple matter then
to obtain graphically the minimum point on the curve.
This will be the value of the game. The corresponding
value of h represents A’s minimax strategy, and B’s
minimax strategy can be computed for this interpolated
value of A.

(2) The above represents a feasible program. How-
ever, the computation can be further reduced very sub-
stantially by taking into account all possible symmetries
present in the game. Suppose that B had precisely the
same strategies as A. Let A choose his mixed strategy
with parameter 4, and let B ignore the additional
information on /, and also choose the same mixed
strategy. Then clearly the pay-off is zero, the game
being symmetrical. Thus we have

9 9 10 10 o
DI IEDIEDH aipilajpjmf(l,]y I,m)=0.
i=0 j=0 I=0 m=0

10
Define  dj,, = Tjim — Pjm» DOting that 3 djy, =0,
m=0

since we are summing over two probability distributions.
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Moreover,
dem: 0 forj < 3
and forj > 6.
For we have,
7Tj1m = bm :pjm fOI‘j < 3
Titm = Om = Pjm fOr j > 6.

jlm

Therefore we can write the pay-off for given 4 and B’s
given strategy, s, as

9 6 10 10
G(h’ S)= Z Z E E aipilajdjlmf(i,ja I, m)

i=0 j=3 I=0m=0
10

2=0 djlmf(i,j’ l’ m)

Butforj = 8,9andi = 80r9,1(i,j,l,m) = — 1 = con-

10 9
> X apy

6
= E a:
J
j=3 1=0 i=0

stant. Therefore, for i = 8 or 9 in the above expression
we have,
10 ]
2_ djlmf(l’j’ 19 m) =0.
Therefore
6 10 7 10
Gh,)= X a5 X X apy X djufG,j, 1, m).
=3 7 i=0 ‘i=0 =
Write
7 10 .
&1 = ‘E) apir Z=:o di1mf G, j, I, m).
Then

6 10
G(h, s) = _2 a; ) &j1>
ji=3 =0

and we analyse separately these components, g1, to the
total pay-off, G(h, s). We now look for the maximum
pay-off, G(h), over all strategies, s: G(h) = max G(h, s).
For each component, g;;, in G(h) there are two alter-
natives, according to whether B draws or stands on the
pair (j, /). Denote these by g%, g'9. Now defining,

dj(llIZI = bm — Pim>
(0)

jim = Om — Djm>

we have for p =1 0r 0,

7 10
gJ(Ip) = _anipil zodj(l‘t,rzf(lajs 19 m)
i= m=

Define g = max (g, g).
6 10
Then Gh =X a Xz
= 150

The computational method is now to take in turn all
pairs (j,1) for j= 3(1)6 and I = 0(1)10, compute g;
and enter p = 1 or 0 accordingly in the 4 x 11 decision
matrix for B’s strategy. The values, a;g;;, are accumu-
lated over / and then over j to obtain finally G(h). The
decision matrix and this value are printed out, together
with the value of 4 taken. The computation is repeated
over a range of values of A.
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In this computation let us consider in more detail the
separate cases for j = 3, 4, 5, 6, with a fixed /.
First define

7 10
21= 3 aipu 3 (3 — bpf(i, ), L m).

Now for j = 3 or 4 we have,

dj%rz:bm‘_bm:()’
0 _

Yiim — Ym — b m*
It follows that g’ = 0 and g{ = z;,, which could be

either positive or negative. Thus
gj; = max (z;, 0),

and we do not have to compute both g’ and g®. If
z;; >0, we record this as the contribution to G(h),
and print p = 0 in the decision matrix. Otherwise, we
record a zero contribution to G(k), and print p = 1.

For j = 6, we have
dﬁ}'z = bm - 8,",
45‘2‘—‘3”.—8,":0,

so that g = 0 and g’ = —

§ 1> which again could be
positive or negative.

Thus
gj = max (— s 0).

Again, we need only compute z;,. If z;; > 0, we record
a zero contribution to G(h) and print p = 0. Otherwise,
we record —z;; as the contribution and print p = 1 in
the decision matrix.

The case j = 5 is slightly different. We have

= (1 - h)(bm - Sm),

— h(8y — byy).
Therefore g}’ = (1 — h)(— z;))
gj(?) = th[.

However, again we need only compute z;. If z;, >0,
we record hz; as the contribution to G(#) and print
P2 =0 in the decision matrix. Otherwise, we record
(h — 1)z;; and print p = 1.

7. Numerical results

The computation described was programmed for the
Ferranti Atlas computer. It was, in fact, only part of
a larger computation to obtain the Banker’s gain in
the game of baccarat. However, the chemin-de-fer cal-
culation provides a neater illustration of the computer
technique. The baccarat calculation is a straightforward
generalization, but more complex, and the results of it
will be described in a subsequent paper. The numerical
results for chemin-de-fer alone will be presented here.
Since the computation described was an integral part of
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Table 3
Banker’s expected gain, G(h), by adoption of an optimal strategy against given A

16

a(n)

0.8 & " A n A N 2 N M N

>

Fig. 3.—Piece-wise linear graph of Banker’s expected gain
G(h) in chemin-de-fer, by adoption of an optimal strategy
against given A

a larger computation, separate timings were not made.
It is, however, roughly of the order of 5 seconds per
value of G(h).

In all, nine values of 4 were taken in the range O to 1,
and the results plotted. The values were obtained
sequentially until the piece-wise linear curve could be
accurately drawn. No attempt was made to construct
a sophisticated program for carrying out this procedure,
although it is not difficult to see how the piece-wise
linear nature of the curve could make this possible.
The values of G(h) computed are given in Table 3 and
the corresponding graph is drawn in Fig. 3. The values
of G(h) are percentages, i.e. they represent the Banker’s
expected gain on a stake of 100 money units. It will be
seen that the minimum point occurs at 4 = 0-8 approxi-
mately, for which the gain is approximately 1:29Y%;.

129

h 0 0-25 | 0-5 0-75 | 0-775 | 0-8 0-85 |09 1-0
G(h) | 1-539 | 1-453 | 1-373 | 1-302 | 1-294 | 1-287 | 1-298 | 1-322 | 1-371
|
Table 4

Decision table giving Banker’s optimal strategy for A in
the range 0 < A< 0-5

0123 456 78 910
3111111111001
4 100111111001
5100001111001
61000 0 O0O0T1T1TUO0TUO0DO

Table 5

Decision table giving Banker’s optimal strategy for A in
the range 0-5< A< 0-8. The ringed number
indicates a change from the previous table

0123456 7 8 910
3 111111110@1
4100111111001
5100001111001
610 0000O0O1T1O0O0TO0

Table 6

Decision table giving Banker’s optimal strategy for A in

the range 0-8< A< 0-9. The ringed number
indicates a change from the previous table
0123456 78910
311111111011
4100111111001
500001111001
6/0000O0O0OT1T1O00 @

Between & = 0 and A = 0-5, the graph is a straight line.
This means that the Banker’s optimal strategy does not
alter for this range of A. This strategy is given in Table 4.
Between h = 0-5 and h = 0-8, the optimal strategy
changes to that shown in Table 5. It will be noted that
the only difference is in cell (3, 9), which has changed
fromOto 1. Between h = 0-8 and & = 0-9, the optimal
strategy is changed to that shown in Table 6 with the
difference that cell (6, 10) has now changed from 0 to 1.
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Table 7

Decision table giving Banker’s optimal strategy for 4 in
the range 0-:9 < A< 1. The ringed number indicates
a change from the previous table

01 23456 78910
3/1 11111110011
4 10M1 11111001
5/00 001111001
6/00000O0T1T1GO0O01

Between & = 0-9 and h = 1-0, the optimal strategy is
changed to that shown in Table 7, in which cell (4, 1) is
now 1. In all, there are thus only four pure strategies
involved for B.

The Banker’s minimax strategy is now seen to be a
mixed strategy obtained from those of Table 5 and
Table 6. The frequency with which the former should
be chosen is easily computed from the graph to be
approximately 0-6. In other words, the strategy should
be as given in Table 5, except that cell (6, 10) should be
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randomized: with frequency 06 the Banker should
stand on (6, 10).

The corresponding optimal strategy* for the player
we have seen is to call on a 5 with frequency 0-8.

8. Previous computations of chemin-de-fer

The Banker’s gain in chemin-de-fer has been of
interest to gamblers for many years, and several manual
attempts have been made for particular values of h.
Scarne (1961), for example, describes a calculation he
did taking A = 0-5, “covering many sheets of paper
and taking many days to complete.” The result agrees
to two significant figures with that obtained here. A
manual calculation for A =0 and A =1 will also be
described in a forthcoming paper by Kendall and
Murchland.

* It is an interesting fact that this strategy is often attained
approximately in practice by the device of standing on the pair 2, 3
and calling on any other combination adding to 5: this gives
approximately the right frequency of calling. However, the reason
why it is optimal is certainly not known. It has been pointed out
to me that the same phenomenon has been observed by computer
manufacturers in the field of process control, where operatives
frequently achieve manually nearly optimal working without
apparent calculation.
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Book review: Threshold decoding

Threshold Decoding, by JaAMEs L. Massey, 1963; 129 pages.
(Cambridge, Massachusetts: M.I.T. Press $4.00.)

This book is one of the M.L.T. Press Research Monograph
series and is intended to show recent research findings and
trends in this field. After some 15 years of work in coding
theory, there has been very little equipment actually designed
and constructed on the basis of the theory. This is mainly
because such schemes are very costly to implement in hard-
ware. Constant threshold decoding, as presented by this
monograph, is a relatively simple and practical method of
error correction. The research reported here led to one of
the first fully practical methods of correcting errors in data
transmission.

Section I covers some of the history and concepts of thres-
hold decoding starting from Shannon’s work in 1948. The
threshold decoding of Linear Codes is broken down into five
sections followed by a summary. The Sections covered are
(@) Linear Codes and the Decoding Problems, (b) Orthogonal
Parity Checks, (c) Majority Decoding (d) A Posteriori Proba-
bility Decoding (e) Threshold Decoding.

Section II covers some of the background for the succeeding
Sections and is a brief discussion of convolutional encoding
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including algebraic properties of such codes, bounds on code
quality, and circuits for encoding and parity checking.

Section III deals with convolutional codes for Threshold
decoding. The concept of threshold decoding set forth in
Section I is now applied to convolutional codes and several
codes are constructed. Section IV covers Threshold decoding
for binary Codes. Section V concludes the convolutional codes
by covering the error probabilities and performance data that
can be obtained by using threshold decoding. Several com-
munication channels and the probability of incorrectly
decoding the set of first information symbols are discussed
at some length.

Sections VI and VII cover Threshold decoding of Block
codes in the same manner as Sections IV and V did for binary
codes.

Section VIII covers the conclusions of the research and
opens up some very interesting areas for future research.

Four Appendices are included covering basic definitions
and properties of modern algebra and proofs of some of the
Theorems used.

In conclusion this is no book for the layman but is a good
buy for the serious worker in coding theory.

R. C. WILLIAMS.
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