Correlated round-off errors in digital integrating

differential analyzers

By C. S. Wallace*

The integration method used in digital differential analyzers suffers from both truncation and
round-off errors. It is shown that, if trapezoidal corrections are employed, the latter dominates.
The round-off errors in successive steps of the integration are shown to be correlated whenever
the function being integrated has a slope which passes through a rational fraction of small
denominator. However, an analysis is presented to show that in general the correlation does not
greatly affect the total round-off error. Some special cases are shown to suffer from anomalously

high round-off error.

1. Introduction

The basic operation in a digital differential analyzer
(D.D.A)) is the integration, by adding to an accumulator
in every clock cycle, of a variable represented by a
number which changes by at most one in the least-
significant digit each clock cycle. If & be the step size
of the independent variable (usually time), well-known
techniques of trapezoidal integration (see, for example,
Bradley and Genna, 1962) can reduce truncation error
to the order of A2 per unit time. A naive analysis based
on the assumption of uncorrelated errors from step to
step suggests that round-off errors will be of order Al-5
per unit time, and hence dominant. It is therefore
important to examine these errors more closely. It will
be shown that round-off errors can be strongly correlated
whenever the rate of change of the variable being inte-
grated approximates to a simple rational fraction.
However, it is found that, except in certain well-defined
exceptional cases, this correlation does not greatly affect
the magnitude of the final error.

2. The basic integration process

The D.D.A. is in its operation almost exactly analogous
to the perhaps more familiar mechanical analogue
computer comprising many wheel-and-disc integrators,
more particularly to the form in which incremental
motions are transmitted among the integrators by com-
mutators and driving stepping motors. In the mechanical
integrator the output is a sequence of electric pulses
announcing incremental rotations dr of the wheel caused
by incremental rotations dx of the disc it touches.

In the usual mechanization, dr and dx can be either
zero or a fixed positive or negative increment. The
average value of dr/dt and dx/dt can be thought of as
the rate of occurrence of the fixed-magnitude non-zero
increments. The ratio of these rates (i.e., the average
value of dr/dx) is governed by the distance y between
the wheel and the centre of the disc it touches. Thus,

d d
approximately, 2; = ya; , i.e. dr = y dx, and the inte-

grator effectively integrates y with respect to x. The
value of y is controlled by a stepping motor whose input
dy is generally the dr output of another integrator.

In the D.D.A., the quantity y is held as a binary
number in a register. Non-zero dx inputs cause y to be
added or subtracted from an accumulator whose over-
flow or underflow pulses are the dr outputs. The
register holding y is constructed as an up-or-down
counter which accumulates dy input pulses. Clearly,
the operation is entirely analogous to the wheel-and-disc,
and again the ratio of the average values of dr/dt and
dx/dt is y. The integration dr =y dx is performed.
(See Fig. 1.)

dr € R-accumulator

overflow
dx

Y - counter dy

Fig. 1.—Block diagram of a D.D.A. integrator

In the usual notation (Bradley and Genna, 1962), each
integrator of a D.D.A. comprises a Y register of capacity
+1 and an R register of capacity +3%. The Y
register holds the instantaneous value of a time-dependent
variable y in the range —1 to 1. In each machine cycle,
tepresenting an increment h in time, y is added to R.
Overflows from R (positive or negative) represent incre-
ments of magnitude 4 in the time integral of y. Also,
in each machine cycle, y, which is itself being generated
as the time integral of other variables, may be increased
or diminished by an amount 4 as the result of overflows
from other R registers. (In practice, the increments of
y may be a few times A4 if y is being generated as the
sum of several integrals.) If trapezoidal corrections are
used, and at the end of a cycle y is increased by dy,
then 1 dy is added to the R register, thus effectively
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Round-off errors in D.D.A.

causing the average value of y over the cycle to be
added to R. In effect, the change in value of the integral
of y during the step of duration 4 is approximated by

yh + 3 yh?

and is hence in error by terms of order {y43. In unit
time (1/h steps) the accumulated truncation error will
be of order 2. (A full treatment of truncation errors
is given by Nelson (1962).)

3. Simple round-off estimate

If it is assumed that the increments dy are chosen
without error to produce an unbiassed approximation
to y, so that the value of y held in Y at the end of each
cycle differs by A/2 at most from the true value of the
variable, then in each step a round-off error of at most
(h/2)h is introduced into the integral. If one takes as
the R.M.S. value of the error 42/24/3, and assumes that
errors are completely uncorrelated from step to step,
then after 1/A steps, the expected accumulated round-off
error in the integral of y would be (42/24/3)/h or about
0-29h1-5. This is substantially larger than the truncation
error, and will therefore be the dominant error. (The
effect of truncation and round-off errors introduced by
errors in the formation of the dy increments, that is, the
interaction and propagation of errors throughout the
D.D.A., will depend on the stability of the equations
being solved, and is beyond the scope of this paper.
However, except in pathological situations, these effects
should not affect the order of magnitude of the final
round-off error.)

Now, the assumption that the round-off errors in y
are uncorrelated from step to step is clearly invalid. To
take a simple instance, suppose that y passes through a
maximum. In doing so, it may spend some considerable
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2.—The D.D.A. trapezoidal approximation to the integral
of a function

Fig.

dy increments which is periodic with period g steps.
For example, if p =2, ¢ =5, the dy increments will
repeat the cycle

01010,01010,01010, etc.

Writing ¢ = sh, where s is the (integral) step number, (1)
can be rewritten
y = h(ps)lq + kh. ()]

Writing y, = nh, where n is integral, n can be obtained
as the integer nearest to the quotient (ps + gk)/q. The
error y, — y is then h times the remainder (positive or
negative) consistent with the rounded quotient, i.e.
h((ps + gk)/q — n). Since p and ¢ are mutually prime,
as s increases, the remainder will cycle in some order
through ¢ values equally spaced throughout the range
—% to +1 with spacing 1/g. For instance, if
y = h (2s/5 4+ 0-05), the pattern of remainders will be

s ‘ 0 ‘ 1 ‘ 2 ‘ 3 l 4 ‘ 5 } 6 i 7 ’ etc.
remainder = | —0-05 | —0-45 ‘ 0-15 l —0-25 ’ 0-35 1 —0-05 \ —0-45 ’ 0-15 | etc.
error/h ,
time within a range of values say from (n — 1) A to nh ) ) 1
(n integral). Throughout this time, it will be repre- The remainders can then be written as —f, —f+ 7
sented in Y by the value nh, and so there will be a large —f+ E’ —f+ 3 ,.... (This is not necessarily the
number of consecutive steps all introducing a positive q q .
round-off error. (See Fig. 2.) order in which the remainders occur.) Now
1 g—1 1
4. Correlated errors —5 < —-f —f+ e <3
Consider a variable y whose true value is given by the : L1
function
whence F>f>5—-- 3
¥ = (pl)t + e, o) 271737

where p and g are mutually prime integers, ¢ is time,
and e is a constant.

The approximate value y, held in Y will never differ
from y by more than 4/2, and will experience a train of
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The value of f will depend on e in (1) or k in (2).
Suppose k is such that f = 4. Then, if so, no remainder
in the division is greater than ¥ — 1/g. Hence, k could
be increased by nearly 1/g without changing any of the
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quotients in the division and still leave all remainders in
range. In other words, the function y could be increased
by nearly h/q without affecting the approximation y,.

Thus a family of functions having the same slope
but having values for a given s, covering a range h/q,
will be approximated by the same y,. Considerations
of symmetry show that the function in the middle of the
range will be approximated with zero average error.
In fact, it can easily be shown that its integral will never
be in error by more than gh2/4, and this value can be
reached only when p = 1. The extreme functions in
the range will be approximated with an average error of
magnitude h/2q. This error would introduce an error
on the integral of h2/2q per step, always with the same
sign. For an example, see Fig. 3.

5. Magnitude of correlation

The above result may be recast thus. If a linear
function y = (p/q)t + e is integrated by a D.D.A., the
integral obtained will differ by not more than h2g/4 from
the true integral of some other parallel linear function
y, =y + g where |g| < h/2q, and will hence accumulate
error at an average rate of hg per step.

Now suppose y is not a linear function of ¢, but
happens at some time, say ¢ = 0, to have a slope y = p/q.
Let y, be the linear function with slope p/q differing from
y at t = 0 by less than h/2g and such that it would be
approximated in Y with zero average error.

Then, throughout the interval surrounding ¢ =0
within which |y — y;| < h/2q, the sequence of values
y. by which y is approximated in Y will be the same as
that by which y, would be approximated. Thus, the
integral of y over the interval will differ from the true
integral of y, over the interval by at most h2g/4.

To find the consequences of this, suppose at ¢t =0,
that y =y, + h/2g —z, y =plq, and y > h, where
0 < z < h/q. Then y can be written (neglecting higher
derivatives) as

Yo + hl2q — z + 1Yot @

The interval during which |y — y,| < h/2q is ter-
minated when

1¥ot2 = z, i.e. when t = + (2z/yg)!/2. 5)

The integral [ (y, — y)dt over the interval is thus

(2z/§0)! 12
2[(—h2g + z — LoDt
0

= (1/3)(4z — 3h/q)Q2z[po)!/2. ©)

Since z is of order A/q, this expression is of order (h/g)!*5.

Since the integral formed by the D.D.A. differs from
the integral of y, over the interval by less than h2g/4,
the expression (6) represents the error in the integration
of y over the interval to an accuracy of h2g/4, and may
be taken as an adequate estimate of the error provided,

h2q < (hjg)t>
i.e., provided
q%> < (1/h)05. @)

133

vy almost % ¥ >4

| approx. . /{*t

L rue

e

t

Fig. 3.—An example showing a consistent overestimation of
the integral of a linear function of slope two-thirds

In typical applications of D.D.A.’s, h ~ 10~6 to 10~8,
so (6) is an adequate estimate at least for ¢ < 10.

Now one error of the form (6) occurs whenever the
slope of y passes through a rational fraction of small
denominator. To estimate the overall round-off error
in an integration one can only suppose, in the absence
of detailed knowledge of z and , on each such occasion,
that all values of z between O and h/g are equally
probable, and that |y,| may be approximated by some
average value R over the whole period of integration.

The squared error expected for a particular p/g,
assuming a uniform distribution of z between 0 and h/q,
is found from (6) to be

hlq
(q/h)L(1/9>(4z — 3hjq)2(2z/ R)dz
— (1/9R)(h/q)>. )

If the reasonable assumption is made that the signs
and magnitudes of the errors occasioned by different
values of p/q are uncorrelated, the average total squared
error in unit time over some population of integrals
can be found by summing the squared errors for the
different p/q, after multiplying each by the number of
times y takes the particular value p/g in unit time. In
D.D.A’s, |p| is usually made by choice of scaling to
range between 0 and about 1. We will therefore consider
only values of p < g. If one considers the integration
of a periodic function such as y = sin #, in each period
of the function, there are four occasions when | y| = p/q
for all p/q except 0/1 and 1/1, which each occur twice.
We therefore estimate the frequency of occurrence of
the value p/q as S, for ¢ > 2, and 4S for g = 1, where §
is some average value of |y|.

The sum of the squared errors in unit time can then
be estimated by

s09R) (5 + 5 + T, nla?) )
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where n(q) is the number of integers less than ¢ and
mutually prime with respect to g, and the terms %
account for the cases 0/1 and 1/1.

The sum may be written as S(h3/9R)Z(2)/Z(3), where
Z is the Riemann zeta-function (Hardy and Wright,
1938), and equals

0-152h3(S/R). (10)
The series in (9) converges fairly rapidly. Hence the
restriction (7) on the validity of (6) and (8) to small
values of g is of no great moment.

While S and R are differently weighted averages of
|¥|, S/R would generally be of order one. Thus the
R.M.S. correlation error in unit time can be estimated as

0-39h1-5,
This value is not much larger than the naive estimate of
0-29A1-5, so it would appear that the effect of round-off
error correlations is not serious.

6. Special cases

If the function y has, say, at time ¢ = 0, contact of
order n with a linear function (p/q)t + e, where n is
greater than 2, then the expansion (4) of y about t =0
breaks down, and must be replaced by

Y =y + hj2g — z + (1/n))y{ 1.
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In this event, the interval corresponding to (5) becomes
t = + (n'z/y§")!/» and the integral corresponding to (6)
has a value of order

(hjg)1+1/m,

Thus such a case can give rise to a round-off error, from
the neighbourhood of the high-order contact, which is
larger than the estimate of the total round-off error in
functions with no such singularity.

Thus, integration of a function such as y = a sin (¢/a),
which has a third-order contact to lines of slope one
whenever ¢t = nma, can be expected to suffer from
round-off errors anomalously large by a factor (1/A)1/6.

Conclusions

Although correlation of round-off errors certainly
occur in the integration process used in D.D.A.’s, the
final round-off error in unit time is in general adequately
estimated by the assumption of uncorrelated errors.
However, if the function being integrated has high-order
contact with a linear function of time having a slope
which is zero or a rational fraction of small denominator,
an anomalously large error can occur.
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Book review: Automatic control

Theory of Automatic Control, by M. A. AI1ZERMAN, 1963;
519 pages. (Oxford: Pergamon Press Ltd., 80s.)

Professor Aizerman of the Moscow Institute of Automatics
and Telemechanics is a leading authority on control theory in
the U.S.S.R. His reputation stands high in the international
field and his work, including the famous ‘‘Aizerman Problem”,
is well known in the West. It is therefore with great interest
and expectation that one welcomes the first English translation
of this work based on the author’s lectures delivered to non-
specialists in the Institute. It is the 1958 second edition con-
taining substantial changes and additions which has been
translated. A British control engineer, Dr. Freeman, has
helped to ensure acceptable scientific phraseology.

For the ground covered the book is large, about a quarter
of a million words, and is divided into five equal sections.
The first is entirely descriptive dealing with various types of
controllers and their characteristics. The author writes with
a process-control orientation, regarding the whole subject as
concerned with the design of instruments called automatic
controllers which are applied to a process. The section con-
cludes with a description of the various methods by which
self-adaptive systems seek conditions of optimum performance.

The next section is of great importance on a vital issue
sadly neglected in the majority of texts, and is concerned with
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the construction of an adequate linear mathematical model of
the actual control process. The author stresses the inevitable
non-linear characteristics of control systems and shows the
essential part that linear analysis has to play in the understand-
ing of system dynamics and stability. The third section deals
with stability in a comprehensive manner including a proof of
the Hurwitz-Routh conditions. The fourth section is con-
cerned with design, chiefly for the parameter estimation to
give transient performance with minimum integral error
squared. There is also the author’s own approximate method
for determining the transient behaviour of high-order
systems.

The last and by far the most interesting section takes essen-
tial non-linearities into account and deals with auto- and
forced oscillations in non-linear systems. The word ‘har-
monic” is used as a literal translation from the Russian but
really means ‘“‘pure sine wave”. This is disconcerting when
dealing with Fourier series representation of period wave-
forms.

Considering that the book was written in 1958, it is well up
to date, including statistical work for random processes. 1Its
main interest lies in its presentation, in that a quite different
approach is made in the teaching of standard control theory.

JonN C. WEsT.
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