The extrapolated modified Aitken iteration method
applied to o-ordered systems of linear equations

By D. J. Evans*

The extrapolated Aitken iteration method as applied to ©,-ordered systems of linear equations
was proposed and analyzed by Evans (1963), who showed that with a suitable choice of extra-
polation factor, together with Chebyshev acceleration, an asymptotic rate of convergence
superior to that of S.O.R. may be obtained for certain problems.

. . The present paper applies the above method to 6;-ordered systems of linear equations, and the
analysis concerning the extrapolation and Chebyshev acceleration of the iterative procedure is
discussed. The theoretical results derived for the asymptotic rate of convergence for both the
o, and G,-orderings are confirmed by numerical examples.

We seek the solution vector x to the equation
Ax=d )

where A is a given (N X N) symmetric, positive definite
matrix, and x, d are (N X 1) vectors. We shall assume
that 4 has the form J-L-U, where L and U are, respec-
tively, lower and upper triangular matrices with zero
diagonal entries, and I is the identity matrix. Since A4
is symmetric, L is U7.

The extrapolated modified Aitken iteration method
for a o,-ordered system of linear equations (Evans, 1963)
is defined by the equations

(I — wL)(I — wU)x#+D
= [w?LU 4+ (1 — )I]x® + wd (2a)
and
x('l+l) — x(”) + an(i(n"rl) — x("))

+ Ba(x™ — x*=1),  (2b)
where the optimum w, is that value of w which mini-
mizes the spectral radius of Q(w), where

O(w)=1— ol — oU)~I— oL)-'4, (3)

the error operator of equation (2a).
Furthermore, it was shown that the optimum w
satisfies the quartic equation

2 T, T
o P, P, @
where T, =PTAY,, s=1,n
ky = $ILUY;

P,=1— wy(l — 7))+ w%ks,

and ¢, and ¢, are the eigenvectors corresponding to the
algebraically highest and lowest eigenvalues of O(w)
when w = w,.

Finally, the Chebyshev acceleration parameters are given
by

do:l
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where 8 =, an Nw, "= 1) + 2agks + 71

is the spectral radius of Q(w,).

Since the optimum extrapolation factor and the
Chebyshev acceleration parameters are not simple to
estimate, the use of the above proposed iteration for
practical applications is severely limited.

We now apply a similar iterative procedure, i.e.
equation (2), but this time further assume that the
matrix A possesses Property A (Young, 1954). Hence
the system of equations ‘given by (1) is o,-ordered and
we can write

I, —U*
=] —- B= 1
a=rom= 500 ©

0 0 0 U*
dU= ,
[z o] mev=[s ]
where U* is an (m X r) submatrix, L* is an (r X m)
submatrix, I;, I, are (m X m) and (r X r) identity sub-
matrices, respectively, and m + r = N.
Now, the analysis given earlier simplifies in the

following manner when we take into consideration the
special property possessed by the matrix 4. For, if A

L

i

is an eigenvalue of Q(w) and ¢ = B is the corre-

sponding eigenvector, we have the usual eigenvector
statement

O(w) = AP
or [(1 — )+ 2LUlY = X — wL)I — «UW.
@)

If we take advantage of the relationships given by (6),
equation (7) further simplifies to

Il — w)y = My — AaU*z

$202 I4dy 61 U0 3senb Aq £62GEE/LEL/Z/L/e1o1Me/|UulWwoo/wod dnorojwepee//:sdiy wolj pepeojumod



oy-ordered systems

[(1 — W) + w?L*U*]z = — AwL*y + NI + w?L*U*)z.
®

Eliminating y, we have
NIz + (Aw3L*U* — 202 L*U* — 2(1 — w)I]
+ (1 — w)([1— o)l + 2L*U*)}z =0. (9)

Now it is easily shown that the non-zero eigenvalues of
B occur in pairs, i.e. tu; (i=1,2,...m), where m
is less than or equal to the number of rows in L* or U*.
Furthermore, the eigenvalues of L*U* are precisely
2 (i=1,2,...m)or zero.

Therefore, the relationship

A+ ANw’? — 20?2 — 21 — w)]
+(1— w(l— o+ o2?)=0 (10)

must hold between the eigenvalues of the Jacobi iteration
matrix B and the eigenvalues of the extrapolated Aitken
iteration matrix Q(w).

Our main concern in extrapolating the basic iterative
method (2) is to choose a value of w which results in a
minimization of the spectral radius of Q(w) and from the
above paragraph, it follows that the spectral radius of
the extrapolated Aitken iteration is related to the
spectral radius of the basic Jacobi iteration by the
following equation

A+ Nw’? — 2022 — 2(1 — w)]
+ (1 — w)(l — w + w?d) = 0.
The discriminant of the quadratic (11) is given by
0?3[4(1 — w)? + wui(w — 2)?]

which is >0 for all w = 0 and u; = 0. Therefore, the
roots of the quadratic (11) are always real for all values
ofu; (i=12,...m).

Further, the iteration defined by equation (2) converges
if —1<A<1. The upper limit is satisfied when
w > 0, whilst the lower limit is attained when w = wy,
i.e. when

220} — X3 + 1) + 4w, — 4 = 0.

n

(12)

Since the coefficients of the quadratic equation (11)
are not simple in form, it is difficult, for this iteration,
to predict the form of variation of the eigenvalues A
with w. In an earlier paper (Evans, 1963) the author
proceeded empirically and calculated the values of A
for the lowest-order finite-difference representation of
two model problems, namely

92¢

2

. 2
PrROBLEM I: n b_¢> —0, h-1=5
oy?

in the unit square with prescribed boundary values; and

. 2
ProsLem II:  d?¢ _ 0, A-1=10,20
dx?

on a unit interval with prescribed terminal values.
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Fig. 1.—Extrapolated Aitken iteration: Problems I and II

Let us now choose the same two problems and pro-
ceed empirically as before. The results are displayed in
Fig. 1. We observe that the lowest extreme values of A
are monotonic in w, and convergence is achieved when
w lies in the range 0 < w < w,, Where wy is given by
(12), whilst the highest extreme values of A possess a
minimum point within the range of convergence.

We further observe from Fig. 1 that the minimization
process of the spectral radius of Q(w) is different for
Problems I and II.

For Problem I, the minimization occurs when the
extreme values of A are equal in magnitude, but opposite
in sign. This happens when the coefficient of A in (11)
is zero, i.e. when

W — 20whd +2w; —2=0

13)

at which time the spectral radius of @(w,) is given by
A= f[(0; — DA — oy + w%u%)]llz

which, by the use of equation (12), can be further

simplified to

(14)

Thus the optimum w; is given by (13) which can be
easily verified to have at least one real root in the range
l1<w<2.

For Problem II, the minimization occurs when the

dX,
—1=0.
dw
Differentiating A,, we find that this occurs when the

spectral radius of Q(w,) is given by

A=+ [1— wi(l — @],

largest eigenvalue A, is minimized, i.e. when
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(15)

Substituting this value of A, into (11), we obtain the
result that the optimum w, satisfies the quartic equation

3wt — 42wd — 4o + 8w, —4=0.  (16)

It can be shown that (16) has at least one real root in
the range 1 < w << 2. We can further simplify equation
(15) with the aid of (16) to obtain the spectral radius

of Q(w,) as
1 —u?)
=1 —elzw) 17
! 14+ 2(1 — w; 1) an
Similarly, A, the lowest eigenvalue of Q(w,) is obtained
from equation (11).

If we assume A, = — A, for the purpose of providing
simple bounds for the Chebyshev acceleration process
the equations (5) are valid; otherwise the parameters of
the Chebyshev acceleration are given by

o — 4 Tn(y)_. — Tn—l(y) 18
"o(b—a T,, 1(7)’ Tn+1(7)’ (18)

where y = [(b + a)/(b — a)] and a and b are the
smallest and largest eigenvalues of the matrix I — Q(w).

Thus, summarizing the results derived in this section,
we have shown that when the extrapolated Aitken
iteration method is applied to o,-ordered systems of
linear equations, the optimum extrapolation factor
which minimizes the spectral radius of the error operator
is a simple root (1 < w << 2) of a linear cubic equation
when u#; < 0-9, and a root of a quartic equation when
u; > 09, the coefficients of both equations depending
upon the largest eigenvalue u; of the associated Jacobi
iteration.

Consequently, the extrapolation and Chebyshev
acceleration parameters can be determined very easily
from an estimate of the largest eigenvalue of the Jacobi
iteration matrix. The iterative method, therefore, is
much more easily defined thaninthe case with o,-ordering.
Thus it appears that the asymptotic rates of convergence
may be greatly affected by different consistent orderings,
which is not true for the S.O.R. method. Lynn (1964)
has recently shown that similar results are valid for the
S.S.0.R. method.

For the practical application of the extrapolated Aitken
method we now proceed on similar lines as for the
S.O.R. method. After an initial estimate of the largest
eigenvalue of the Jacobi iteration matrix u,, the optimum
parameter w, is determined by solving the appropriate
equation (13) or (16) using the Newton—Raphson method
with a starting approximation w{? ~ 1-4. In practice
only 3 to 5 applications of this process are required if
we assume convergence to be sufficient when

|+ — @ ™| < 0-01.

Immediately w; is known, the spectral radius A can
be determined from (14) or (17), and the Chebyshev
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acceleration parameters from (5) or (18), to define the
complete iterative process.

Asymptotic rates of convergence for the extrapolated
Aitken iteration with o,-ordering are obtained when we
assume u; = 1 — ¢, where ¢ < 1. It is easily verified
from (16) that w; = 4/2 is a close approximation to the
optimum extrapolation factor, whilst the spectral radius
given by (17) is 1 — (v/2 + 1)e. The asymptotic rate
of convergence of the complete iteration process (2) is
not less than 2-2¢'2, which compares slightly un-
favourably with the S.O.R. method, whose convergence
rate is 24/2¢!/2. Finally, the range of convergence of
the iterative process (2) is given by 0 < w < 1-54, since
1-55 can be shown to be a close approximation to a
root of (12).

Experimental programs were written for the Man-
chester University Atlas computer to perform the
procedures discussed in this paper. Fig. 1 shows the
highest and lowest eigenvalues of the error operator
plotted as functions of w for the o,-ordering for both
Problems I and II, whilst Figs. 2, 3 and 4 show the
asymptotic rates of convergence for both the o; and
a,-orderings of the extrapolated Aitken iteration method
compared with that of the S.O.R. method for each
problem. The asymptotic rates of convergence of all
three processes at the optimum w are given in Table 1,
from which we can establish that the o,-ordering com-
pares unfavourably with the S.O.R. method, as predicted
by theoretical considerations. The results for the
o,-ordering agree with the theoretical considerations
given elsewhere (Evans, 1963). Furthermore, the ranges
of convergence of the extrapolated Aitken method for
the o; and o,-orderings can be verified both experi-
mentally and theoretically to be 1:55 and 1-5,
respectively.

The relative efficiency of the extrapolated Aitken
method to the S.O.R. method will now be discussed.
The amount of work done at each mesh point for the
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Fig. 2.—Asymptotic rates of convergence: Problem I
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Table 1
Optimized rates of convergence
METHOD PROBLEM I, £~1 = 5 | PROBLEM II, A ~1 = 10| PROBLEM 11, A ~1 = 20
Chebyshev accelerated extrapolated Aitken, 1-178 0-428 0-224
o-ordering (w = wy) w; =138 w; =1-42 w; =1-42
AL =0-563 A = 0-903 A =0-973
Chebyshev accelerated extrapolated Aitken, 2-063 0-470 0-301
op-ordering (w = wy) wy =12 wy =138 wy; =146
A, =0-25 A, = 0-608 A, = 0-806
Optimized S.O.R. (w = wy) 1-386 0-580 0-301
wp =1-25 wy, = 1-5603 wp = 1-7406
A, =0-25 A, = 0-5603 Ay = 0-7406
04 Asymptotic vate
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Fig. 3.—Asymptotic rates of convergence: Problem II, A 1=10

general 5-point finite-difference equation is 5 multipli-
cations and 6 additions for the S.O.R. method, but
8 multiplications and 8 additions for the o,-ordering
and 7 multiplications and 7 additions for the o,-ordering
of the extrapolated Aitken method. Thus the new
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method compares unfavourably in efficiency by approxi-
mately 509%.
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