Numerical solution of Fredholm integral equations of first kind

By C. T. H. Baker, L. Fox, D. F. Mayers, and K. Wright*

The solution of Fredholm integral equations of the first kind is considered in terms of a linear
combination of eigenfunctions of the kernel. Practical and theoretical difficulties appear when
any corresponding eigenvalue is very small, and ‘‘partial’’ solutions are obtained which exclude
the ““small’’ eigensolutions and which are exact for a slightly perturbed integral equation. Methods
are discussed for simplifying the computation of the relevant eigensolutions, and four numerical

examples are treated in detail.

Introduction

1. Ttis well known that the Fredholm integral equation
of the first kind is somewhat difficult to solve. In §§2-5
of this paper we recall in general terms the analytical
nature of the problem, and in §§6-7 we show in some
detail how this is reflected in standard numerical methods.
The problem is essentially ill-conditioned, in the sense
that there are many solutions which satisfy exactly an
integral equation slightly perturbed from the original,
and we might therefore decide to seek a “‘smooth”
solution rather than an exact solution. There are many
ways of selecting smoothness, and here we concentrate,
with several numerical examples, on finding solutions
represented by linear combinations of the eigenfunctions
corresponding to the dominant eigenvalues of the
kernel, noting that in general the contributions from
functions belonging to very small eigenvalues are highly
oscillatory and difficult to obtain accurately.

Analytical difficulties
2. The Fredholm equation of second kind, given by

b
Lk(x, W)y = M) + &), )

can be solved for a non-singular kernel k(x,y) by
expressing the integral in (1) in terms of a finite-difference
or Gauss-type quadrature formula, and obtaining
approximate ““pivotal” values of f{y) from a set of linear
simultaneous algebraic equations. For example we
might use a Newton-Cotes-type integration formula to
obtain for (1) the representation

[ KGe DM = 5 G 3 + e
- M) 50D @

where e, is the “error term” in the quadrature formula,
depending on the functions k, f and also on x,, & is the
constant interval between pivotal points, and w, is the
weighting coefficient at pivotal point y,. The aggregate
of these equations for the pivotal points x; = y;, ya,

. ., y, then produces algebraic equations represented by

hKDf = M+ g —e, 3)

where K, the “matrix of the kernel,” is given in obvious
notation by

K | @

knl ,kn2 ...k,,,, 2

the diagonal matrix D is diag(w;, wy, ..., w,), and

f, g and e are vectors whose components are the

respective pivotal values f;, g, e, fors =1,2,. .., n

For Fredholm equations of the first kind the coeffi-
cient A in (1) is zero, and the corresponding equations
of type (3) become

hKDf = g — e. (5)

We note in passing that the values of x; need not here
be the same as the y,, though their number must be the
same in order to produce a square matrix K, and if
k(x, y) = k(y, x) we preserve symmetry in the algebraic
problem if we take the x, to be the pivotal points of the
quadrature formula.

3. In general practice we attempt to choose an
interval A for which the error vector e and its effect on
the solution are negligible, and for this purpose we
commonly obtain and compare successive solutions
for different values of the interval A in (2) or for
different numbers of points in the corresponding Gauss
formula.

Alternatively (Fox and Goodwin, 1953; Fox, 1962)
we might retain the same interval, but include the effect
of the error term in an iterative process typified for (3) by

hKDfC+D = MetD 4 g — e, e =0, 6)

the iteration being necessary because e depends on the
yet unknown f.

It is clear that the success of either method depends
on the behaviour of the matrix (A — hKD)~!. For the
first method, for example, suppose that the true f, the
solution of (1), satisfies equations (3) while the computed
F satisfies

hKDF = AF + g, @)
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Fredholm integral equations

with e neglected. The error vector n = f — F satisfies at
the pivotal points the equation

n = (M — hKD)~ e, ®)

and for convergence of the computed solution to the
true solution we must not only have e—0 with A,
which is necessary anyway for the success of the quad-
rature formula in (2), but also (Al — hKD)'e must
tend to the null vector as #— 0. For this purpose the
inverse must exist, that is A must not be a limit point of
the eigenvalues of the matrices AKD as h— 0.

4. This is reflected in the mathematical theory of
integral equations. If e(x) is the error in the quadrature
formula the error function

n(x) = flx) — F(x) ®
itself satisfies the integral equation
b
[ e, )y = Xn(x) — ), (10)

and if A 5= 0 the conditions for the existence and unique-
ness of solutions of (10) are the same as those for
solutions of (1).

If there are non-trivial functions f,(x), corresponding
to constants A,, such that

b
[ K 20y = M) )
for f(x) = f,(x), A = A,, these being the “eigensolutions
of the kernel,” it is clear that if A in (1) coincides with
any A, there can be no unique solution of (1), because
any multiple of the eigensolution f,(x) can be added to
any particular solution of (1).

If the solution is unique, and A # 0, we can write

b
7(x) = A=le(x) + A2 [ R(x, y; A=De()dy, (12)

where R(x,y; A~1) is the “resolvent kernel.” This
does not exist if A is an eigenvalue, and (12) clearly fails
if A= 0. For other values of A the resolvent kernel is
bounded, so that n(x) — 0 as e(x) — 0. Properties of
the resolvent kernel, and allied results, are given by
Courant and Hilbert (1953).

5. This analysis fails for the case A = 0, that of the
Fredholm equation of the first kind. But we can also
examine this formally in relation to the homogeneous
problem (11). Suppose that (11) has at least some
non-zero eigenvalues A, and corresponding non-trivial
solutions f,(x), and suppose that we can express g(x)
as a linear combination of these eigenfunctions in the
form

8(x) = a, fi(x) + ar fo(x) + .. .. 13)
Then the solution of (1), with A = 0, is given by
a
£ = LA+ 2H0 + ... (14)
Ay A
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For analytic success both series (13) and (14) must
converge, and without going deeply into the theory it
is clear that we might fail if A,— 0 too rapidly.
Unfortunately, this is only too likely. If the kernel is
degenerate, that is of the form

)4

k(x9 J’) = El X,(x)Y,(y), (15)
there can be at most only p non-zero eigenvalues. In
that event (14) can converge, becoming a finite series,
only if (13) is satisfied exactly by a combination of the
eigenfunctions belonging to these non-zero eigenvalues.
But our solution is not then unique, because we can
add to the right of (14) any combination of eigenfunctions
belonging to zero eigenvalues.

Another possibility is that the kernel has an infinity
of non-zero eigenvalues. Compared, however, with the
self-adjoint differential-equation problem of type

Y+ Ay =0, 16)

which has an infinity of eigenvalues with infinity as
limit point, those of the kernel crowd into the origin,
with obvious disastrous effect.

Numerical difficulties

6. These situations have close analogies in the numerical
solution of the corresponding algebraic problem. Con-
sider first the degenerate kernel (15). Here the corre-
sponding matrix K of (4) is singular if its order n exceeds
p, and this is quite independent of the nature of the
functions X(x), Y(») in (15) (Fox, 1962). In particular
these functions need not be polynomials, or even have
polynomial-like behaviour which was suggested by Fox
and Goodwin (1953) as the main reason for the difficulty.
Now we may want to take more than p points in the
quadrature formula just to make the error term satis-
factorily small, and in this sense, of course, the Gauss
quadrature has obvious advantages. But with a singular
matrix, and even with a g(x) which permits a solution,
we do not have a unique solution and must make some
decision about what solution is acceptable.

Consider, for example, the equation

1
.G+ 20y = g, (17
with degenerate kernel. The two non-zero eigenvalues
and corresponding eigenfunctions are

A Ay =14 1+3712 fi(x), folx) = x + 3712, (18)

and we can find no solution unless g(x) is also linear.
The use of the trapezium rule, with the points x; = 0
and 1 in (2), gives the equations

J) = 2¢(0), f0) + 2/(1) = 2g(1), 19)

with a perfectly definite but generally useless solution
for arbitrary g(x). With Simpson’s rule, or with more
points in the trapezium rule, the matrix is singular.
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Fredholm integral equations

For example, with Simpson and x, = 0, 3 and 1 we find

2f(4) + A1) = 6g(0)
3f(0) + 4/3) + 3A1) = 6g(}) (20)
S0) + 6/(3) + 2/(1) = 6g(1)

We deduce that there is no solution wunless
£(3) = Hg(0) + g(1)), confirming the known necessity
for linearity of g(x). The resulting solution, however,
can be written as

J(0) = 6g(1) — 18g(0) + 2a,
f@) =380) —a, f(1)=2a, (21)

for any value of the parameter a.

With four points in the quadrature formula we have
two arbitrary parameters, and so on, corresponding to
the fact that the true solution can contain any multiple
of any f(x) which satisfies

[Fordy =0, [ vty =0, @)
0 0

corresponding to zero eigenvalues of the kernel.

7. When the kernel is not degenerate it would seem
that we may have some chance of finding a solution,
and even a unique solution. What happens in general
practice is that, in the solution of the linear equations

of type
hKDf = g, (23)

which is (5) with the error term neglected, we obtain
fairly smooth solutions with a small number of pivotal
points. They are likely to be inaccurate, however,
because the error term of the quadrature formula is not
in fact small enough. As the order of the matrix
increases, with more points in the quadrature, the
results show increasingly divergent oscillation.

The reasons for this are fairly obvious. First, the
more points we take the more accurately can our kernel
be approximated by the degenerate form (15), so that
our matrix becomes increasingly nearly singular.
Second, the algebraic equivalent of the solution of (23),
corresponding to equations (13) and (14), is

g=afV +af®+...+a,f®

_ % w4 % g a4 o [ @Y
—)\lf()+)(2f()+'“+/\,,f()

where £ is an eigenvector, A, the corresponding eigen-
value, of the matrix nKD. If the matrix is of order n,
with distinct non-zero eigenvalues and therefore a full
set of vectors, equations (24) are certainly possible and
give the exact solution of the algebraic problem. Now
with n points we would expect to get those eigen-
functions, or at least approximations to them, for
which the error term is small, and that means the eigen-
functions with fewest changes of sign, the smoothest in
this sense. Moreover, unlike the differential-equation
problem, these are likely to be associated with the larger
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eigenvalues. As we decrease the interval we get better
approximations to these eigensolutions, but we also
introduce approximations to more and more of the
highly oscillating functions associated with the small
eigenvalues. These approximations, moreover, are
rather poor, and high relative errors in small A give
large absolute errors in the second of (24).

All this, in turn, is associated with the fact that the
solution of (23) can be written in the form

f= (hD)~Y(K"'g). (25)

For the trapezium rule D = diag(4, 1, 1,..., 1, %),
while for any rule with the same pivotal points but with
different weights we have D = diag(wy, ws, ..., W,),
and the solution can be obtained immediately from that
for the trapezium rule by multiplying the successive
components by the factors dw; !, wy !, wil, , . ., 4wy L
This phenomenon, an example of which appears in
Table 4 of §17, is independent of the functions appearing
in the integral equation and of the size of the error
terms in the quadrature formulae.

Approximate solutions

8. The analysis suggests that we might best try to
get an approximate solution to the given integral equa-
tion, our solution being exact for a slightly perturbed
equation

[ ke DRIy = 500) + (), (26)

by suppressing in the expansions (24) the contributions
from the smaller eigenvalues and corresponding func-
tions. Our success will depend mainly on the accuracy
with which g(x) can be fitted with the first few terms of
the first of (24), and in this respect we may get a reason-
ably smooth solution of (26), which might have value
in physical problems in which g(x) has errors of measure-
ment, when &(x) is less than the ‘“tolerance.”

This suggestion represents some kind of smoothing
process, different in kind from that suggested by Fox
(1962) for degenerate kernels, in which the parameters
of type a in (21) were adjusted to give smooth differences
of f(x), or from that of Phillips (1962) who implicitly

b
chooses that &(x) in (26) which minimises | (/(x))%x.

9. With the use of eigenfunctions (the suggestion of
which is not new in principle) we do not mind reducing
the interval, since we are concerned only with improving
the approximation to the first few dominant eigen-
solutions, and we have perfectly good methods for
finding these solutions in order of decreasing eigenvalues.

In particular, if the kernel is symmetric so that
k(x,y) = k(y, x), a case of considerable importance,
we can take corresponding advantage in the algebraic
problem by replacing (23) by

Cé =, C=hD'2KDI2, ¢ = D', = D'i%.

@7
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Fredholm integral equations

The eigenvalues of the symmetric matrix C are those of
hKD, and if we expand i in terms of the eigenvectors
¢ of C we have

= Za,d?, o = $NP[grr$0, (28)

in virtue of the orthogonality of the eigenvectors, and
the solution is given by

f=D-124, §=3(5)e". 29

Example 1

10. As a simple but instructive example we consider
first the integral equation (17) whose kernel is degenerate.
The trapezium rule will not give the exact solution at
any interval, but the corresponding matrix AKD will
always have only two non-zero eigenvalues, and these
eigenvalues. . and corresponding eigenfunctions will
approximate more closely, as 4 decreases, to those of the
kernel of the integral equation. The latter are given by
(18), and for the case g(x) = x the exact linear solution
is f(x) = 4 — 6x.

11. The calculation of the eigensolutions of any
degenerate kernel is facilitated by the observation that
if k(x, y) is given by (15), and we use the quadrature
formula involved in (2), then the (i,j) element of the
matrix hKD is given by

P
(hKD);; = hw; Zl X, (x)Y (). (30)
re
The matrix AKD has rank p, and we can express it as a

product 4B of matrices of respective shapes (n X p)
and (p X m), for p < n, where

(A)ij = Xi(x;), (B)ij = hiji(yj)° (1)

The non-zero eigenvalues of KD are then those of the
(p X p) matrix BA, and if ¢ is an eigenvector of BA the

corresponding vector of hKD is Aé.
If we take x; = y; it follows in the general case that
b
(BA),; = Comp. [ Y,()X,(»)dy, 32)
where the right-hand side of (32) means the result of
applying our quadrature formula to evaluate the integral.

This process, with the integrals in (32) evaluated exactly,
gives the exact eigensolutions of the kernel.

12. In our example k(x, y) = x + y, so that

r=2 Xi=x Y =1,
XZ = 19 YZ =) (a9 b) = (09 1)7 (33)
and for the trapezium rule we find
3 l]
BA = , 34
Latw s 69

the term in A2 arising from the trapezium-rule approxi-
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1
mation to j ¥2dy, the other approximations being exact
0

for the integration of a constant and a linear function.
We find the eigenvalues

Ap Ay =1 £ 37V + $h)'2, (35)

and corresponding eigenvectors with components 1,
+ 3-Y2(1 + 34%)12, The corresponding vectors of
hKD have rth components equal to rk + 3~ 1/2(14 3h2)1/2,
and comparison with (18) shows in passing that our
trapezium-rule approximations have errors represented
by a series of powers of 42, verifying our expectation of
the validity of ‘‘h2-extrapolation.”

We may also note in passing that the linearity of the
finite-difference eigenvectors can also be proved by
noticing that the eigensolutions come from the equations

h 3w + ) = M),

in which x is given the specific values y,. But the com-
putation of f{x) for any x can then be effected from (36),
for A 5= 0, so that we can regard x in (36) as a con-
tinuous variable. Differentiation of (36) with respect
to x then gives

(36)

h 3 wfly) = N, (37)

so that f”(x) is constant and f{(x) is linear in x.

13. We need rather a small interval to get a very good
approximation to the true solution. For example with
h =}, and «, and «, defined in (28), we find

A; = 1-086302, A, = — 0-086302,

o A7 1 =1-0390, o,A;! 3-6861 (38)

f=(3-667,2-333, 1-000, —0-333, —1:667) |,
with significant errors compared with 4 — 6x. This is
due largely to the relative error in A,, which is about
109, and the fact that the contribution from its eigen-
vector has a substantial factor.

Simpson’s rule, of course, gives the exact result at
any interval.
Example 2

14. As a second example we treat the equation

[ 62 3930y — 41+ 372 — 53, (39)
0

whose solution is f(x) = x. This was considered by
Fox and Goodwin (1953), who noted the oscillation
produced by the direct solution of the trapezium-rule
finite-difference equations in the table

x 0 : 3 : :

8
S 0-0144 0-1464 0-1573 0-6822 —0-2338

5 $ : 1
1-8157 —0-5076 1-7323 0-4003.
(40)
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Fredholm integral equations

Here the kernel is not degenerate, and there is an
infinity of non-zero eigenvalues. We find them in
decreasing order of magnitude, and compute solutions
from (29) expressed in the form

f=D M2 S A0, @1

taking s=1,2,..., and choosing its appropriate
terminal value. Some results are given in Table 1, for
interval A = } with the use of the trapezium rule. For
simplicity we tabulate in each case the error, rather
than the computed solution, since here we know the true
result.

Table 1 (k= 1)

4x s=1 s=2 s=3 s=4 s=35

0 —0-370 —0:0956 —0-0123 —0-0399 —0-0299
1 —0-168 —0-0056 —0-0415 0-0185 —0-0332
2 —0-001 0-0198 -0-0146 —0-0674 0-1010
3 0-118 0-0280 0-0287 —0-0019 —0-2080
4 0-235 0-0315 0-0752 0-1440 0-3110
Ap = 0-8227, A = — 0-1028, A3 = — 0-0113, Ay = — 0-0015,

The results are best for s = 3, though little inferior for
s = 2, and in the latter case the vector g — a,f; — a,f>
has a maximum component of about 0-0009.

15. But we must be concerned about the error term
in the quadrature formula. If this is not negligible our
algebraic eigenfunctions are not quite those of the
kernel, and will in fact contain small multiples of some
of the unwanted eigenfunctions of the true problem.
We might therefore decide that we can get a reasonable
fit with say three eigenfunctions, and then proceed to
get very accurately the first three eigensolutions. The
trapezium rule is rather inefficient for this purpose, so
that we repeat the computation with Simpson’s rule,
taking small enough intervals to justify faith in both
A, and ¢, r=1, 2, 3. We also give the error in the
results corresponding to the use of just one and two
accurate eigenfunctions, respectively, and all these are
shown in Table 2. The accuracy even in the fourth
decimal of A, cannot be guaranteed without taking A
as small as 1/16, but we show the conclusions only at
the pivotal points x = 0(})1.

Table 2 (h = &

4x s=1 s=2 s=3
0 —0-375 —0-0725 —0-0255
1 —0-172 —0-0155 —0-0031
2 —0-019 0-0151 —0-0032
3 0-108 —0-0012 —0-0011
4 0-220 —0-0204 —0-0046

Ap = 0-81085, A, = — 0-09565, A3 = — 0-00655
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Example 3

16. For the kernel e in the range (0, 1) the eigen-
values get small even more rapidly, and in Table 3 we
show the first four, obtained by Gauss quadrature with
various numbers N of points.

Table 3
N A Ay A3 A4
2 1-35208 0-10209
4 1-35303 0-10598 0-00356 0-00007
6 1:35303 0-10598 0-00356 0-00008
8 1-35303 0-10598 0-00356 0-00008

Here we should clearly expect to get a reasonable
solution with at most the first three eigenfunctions, and
indeed it would be dangerous to use the fourth unless
we compute it to many more figures. In fact for the
equation :

1
[eofydy = x + D et =1, (@42)

0
whose solution is e*, we find with N = 8 calculations
whose maximum errors are 0-36, 0-017, and 0-0004
corresponding to the use of A;, A; and A,, and A, A,
and A;. With more eigenfunctions the error becomes
greater, and with six it has a maximum of as much as 1-2.
Somewhat surprisingly we get an extremely accurate
result by solving the linear equations directly with N = 4,
this corresponding, of course, to the use of all four
relevant eigensolutions. The error is only about 0-0001,
and we conclude that the contribution from the function
corresponding to A, is quite small and unaffected in the
fourth decimal by a probably large relative error in A,
This circumstance, of course, depends on the right-hand
side g(x) in the integral equation, and the direct solution
of the linear equations with a different g(x) could

produce very large errors.

Example 4

17. As a final example we consider the problem
discussed by Phillips (1962), given by

-

6
| K = )y = gx)

== ~ s, =L, 3
Kiz) =1+ cosdnz, 2] < 3; =0, |z| > 43)

9 . .o
g(x)=(6—|x|)(1 4+ 4cos{nx) + 27Ts1gn(x) sin -35

signx=1,x>0;=—1,x <0,

and whose solution is
fx) = K(x). (44)

The discontinuity in the kernel suggests the use of the
trapezium rule for the quadrature, and at the interval
h = 1, giving a matrix of order thirteen, we find eigen-
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values ranging in modulus from about 5-8 to 0-008,
so that the linear equations are not very badly con-
ditioned. In fact direct solution of these equations gives
results summarized in the first row of Table 4, with
reasonably small errors. The Simpson-rule results,
shown in the second row, are considerably poorer.
The results of the first and second rows of Table 4,
incidentally, confirm the comment of §7 and equation (25).

Table 4
X 0 +1 +2 +3 +4 +5 +6
Trapezium 1-962 1-539 0-462 0019 0 0 O
Simpson 2:943 1-154 0-694 0-014 0 0 O
True 2:000 1-500 0-500 0 0 0O

In fact the right-hand side can be fitted reasonably
well with a combination of the first seven eigenfunctions,
and the errors in the solution at the integer values of x
are shown in Table 5, together with similar results, for
comparison, using different numbers of eigenfunctions.
The trapezium rule is used in all cases.

if the leading submatrices of C of orders 1 to p are non-
singular we can write

¢4z Fwiesl

where L, and U, are lower and upper triangles of order
p, Qi is (mn—pxp), and Q, is (p X n—p). The
decomposition can be performed by a standard Gauss
elimination process, and Fox (1964) gives some examples
of this. We may, however, need to rearrange the rows
and columns of C, that is to use “‘complete pivoting,”
and the decomposition then refers to I,CI;, where I,
and I, are row and column permuting matrices.

If C is symmetric we do well to take pivots on the
diagonal, so that I, = I, = I"!, and I,CI; is an ortho-
gonal similarity transformation of C.

In particular if C is symmetric and positive definite
we can use the Cholesky decomposition, replacing (45) by

L
ICI, = AB = [Q—j [Li|Qil,

and the matrix BA is the real symmetric (p X p) matrix
LiL, 4 Q1Q;.

4%

(46)

Table 5
x 0 +1 +2 +3 +4 +5 +6
s= 3 0-445 0-137 —0-371 —0-293 0-134 0-281 0-209
s= 5 0-103 0-009 —0-124 0-018 0-124 —0-055 —0-155
s= 17 —0-011 0-014 —0-010 0-007 0-009 —0-031 0-045
s=10 —0-016 —0-014 0-009 0-010 —0-023 0-012 —0-007

In practice, of course, we do not know how accurate
our results are because we do not know the true solution,
so that no reliance can be placed on the conclusions of
Table 4. As before we should examine from the results
of Table 5 how accurately our function g can be fitted
by a combination of the larger eigenfunctions, and then
proceed to compute these eigensolutions more accurately
with smaller intervals. With s =7 the maximum

7
component of g — X a,f® is about 0-007 at the
r=1

interval A = 1.

Computation of eigensolutions

18. In most of the examples we have computed the
eigensolutions by standard processes such as those of
Givens for symmetric matrices. We noted in §11,
however, some simplification for a degenerate kernel.
A matrix C of order n and rank p can be expressed as
the product of two rectangular matrices. In particular

0-10000 0-14142 0-14142
0-20816 0-21666
0-23470
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19. When the kernel is not degenerate its matrix
may not be singular, but we have noted that a large
matrix, corresponding to the use of many pivotal points,
is likely to have several very small eigenvalues. In that
case we cannot produce exactly the decomposition (46),
but we find in the elimination that all the later elements
of some reduced matrix are very small. Moreover, a
slight perturbation of the elements of C could make
them all zero, and we can say that we have the exact
rectangular decomposition for a slightly different kernel.

Alternatively, and particularly in the positive-definite
case when all the eigenvalues are real and positive, we
note that the sum of the eigenvalues is the trace of the
matrix LiL, + Q1Q;, and we can reasonably stop the
elimination when there is no significant addition to the
sum of squares of the elements in matrix Q,.

For example, the symmetric matrix AD!'/2KD'/2
corresponding to the kernel ¢ and the trapezium rule
at the points 0(0-2)1-0, has for its upper triangular
half the array

0-14142  0-14142  0-10000
0-22550  0-23470  0-17273
0-25425  0-27543  0-21098 1
0-28667  0-32321  0-25769
0-37930  0-31474
0-27183 | ,
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and the matrix I,CI;, where I, is the unit matrix with
rows permuted in order 5, 2, 6, 4, 1, 3, is very nearly
equal to the symmetric rectangular decomposition (46)
with

0-61587  0-38109  0-51105
[Li|Qi] = 0-25086 —0-08779
0-05433

the maximum amount of the perturbation being about
0-00031 in the (1, 1) element of (47). The first three
eigenvalues of C are respectively 1-36027, 0-11531, and
0:00493, and the eigenvalues of

1-31385 0-23584 0-00731
LiL, + Q{Q,= |0-23584 0-16111 —0-00649| (49)
0-00731 —0-00649  0-00525

are 1-36026, 0-11528, and 0-00467.
L
The vectors y of (49) give approximations I;I:al] y to
1

those of C, and their discrepancy, as one might expect,
is roughly proportional to the relative error of the
corresponding eigenvalues, being very small for the first
two and rather large for the third.

Conclusion

20. There are other methods of producing smooth
functions which satisfy exactly a perturbed integral
equation. Some workers, for example, have assumed a
solution of the form

f= XZa,f(x), (50

choosing the functions f,(x) so that the integration can
be performed analytically or by numerical quadrature
with a small error term. The constants a, are then
computed from a set of linear equations so that the
integral equation is satisfied exactly at some points
(collocation) or in a least squares sense over the whole
range.

One problem here is that the equations for the a,
tend to be ill-conditioned. But we have also to specify
in advance the functions f,(x). Our choice of eigen-
functions of the kernel would seem to be more natural
and relevant than any alternative somewhat arbitrary
choice.

21. In some cases, however, we may know from other
considerations that a particular choice of functions will
produce a good result. This happens, for example, for
the integral equation

1
[k M)y = $x(1 — 53, 0< x< 1
k(x,»)) =1 —x)y, 0<y<x<l1 GD
=(1—-yx, 0<x<y<1 J,
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0-52481 0-22963 0-44721
0-10165 0-21491 0-18428 (48)
—0-02932 0-02789 —0-02556 |,

which has the continuous solution f(x) = xin0 < x < 1.
This problem was discussed by Tricomi (1957), who
showed that the eigensolutions of the kernel are

A, = (rm)~2, f(x) = sin (rmx). (52)

It is clear that no combination of the eigenfunctions
can produce exactly the solution f(x) =x at x =1,
since sin (rmx) vanishes at this. point. We have the
type of point-wise error which is peculiar to a Fourier
series of sine terms. The cosine series can give a good
approximation at every point, and the substitution

f(y) = Za, cos (rmy) (53)

in (51) leads to a set of equations for the a, which, at
least up to r = 20, are not particularly ill-conditioned.

22. The numerical solution of (51) by our methods
shows some interesting points. Since the kernel has a
discontinuous y-derivative at x =y we prefer the
trapezium rule for the quadrature, and the matrix hKD
has zero elements in its first and last rows and columns.
This matrix therefore has two zero eigenvalues, whose
eigenvectors are the first and last columns of the unit
matrix. The eigenvectors corresponding to non-zero
eigenvalues have zeros in the first and last components.
Moreover, though the trapezium-rule matrix #KD does
not give the true eigenvalues at a finite interval it does
give the true eigenfunctions, and the direct solution of the
linear equations at any interval gives f(x) = x at all
points except x = 1.

23. Our examples all involve symmetric kernels, and
we hope to continue experimenting with more difficult
problems, for example, those in which eigenfunctions
of large oscillation may be associated with relatively
large eigenvalues. The unsymmetric case will necessitate
a different method of choosing the constants «, in (28),
and even that choice in the symmetric case, which
minimizes the sum of squares of the components of the
vector § — Za,$®, is not necessarily the best in all
cases. We might, for example, sometimes prefer to
minimize the largest component in absolute value.

Other questions include an evaluation of the method
of §19 for finding the eigensolutions, and this also we
hope to investigate further.

We are grateful for D.S.LR. grants which enabled
two of us (C.T.H.B. and K.W.) to take part in this
investigation.
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Book review: Linear programming

Linear Programming and Extensions, by GEORGE B. DANTZIG,
1963; 625 pages. (Princeton: University Press; London:
Oxford University Press, 92s.)

This long-awaited book by Professor Dantzig will certainly
come to be regarded as one of the classic textbooks on linear
programming. I can highly recommend it to all interested in
the theory of linear programming and its more useful exten-

- sions, particularly to those interested in the economic inter-
pretation of linear programming models, and also for use as a
library reference book. The treatment of the subject matter
is mathematically complete, and explained in sufficient detail
to make it as readable as possible. This approach, together
with the wealth of material which the book contains, explains
its great size. It gives almost comprehensive coverage to the
main developments in the subject until the end of 1960.

Just how many years ago it was that I first heard that Dr.
Dantzig was writing a book on linear programming 1 now
forget. But as the years passed and it failed to appear,
“Dantzig’s book” became almost a joke. Now the preface
reveals the great organization that went into its preparation.
No less than 24 people, most of them well known in linear
programming circles, including five professors and nine doc-
tors, are thanked for contributing to the writing of various
sections, and a further nine people for helping with the layout,
proof-reading and indexing. The result is a book of authority
and of technical excellence.

Naturally, with so many hands contributing, the style is not
entirely uniform. ‘But thisvariety adds a certain spice. Some
sections in which the ideas are conveyed in story form such as
“The Scheme of the Ambitious Industrialist” make particu-
larly good reading, whilst in other chapters the ideas of several
papers are rather loosely strung together. An occasional
remark reveals the long period of gestation, such as that in
the second chapter about developments in the ten years
since 1947.

The chapter on the origins and early influences on linear
programming is of great interest. But Professor Dantzig is
too modest to allow the reader to recognize the full impact
which the team under his leadership at the Rand Corporation
had on the rapid development of this subject in the nineteen
fifties.

Professor Dantzig believes in the usefulness of approaching
his subject in many ways in order to gain as many insights
into it as possible. The simplex method is therefore explained
not only in terms of linear equations and inequalities, but also
in terms of matrix algebra, with two distinct geometrical
interpretations, economic interpretations and an equivalence
with matrix games.

Likewise he covers the transportation problem in a variety
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of manners: in terms of its own techniques, in terms of the
simplex method and in terms of networks and trees. Various
special cases, extensions and generalizations of transportation
problems and network problems are also discussed.

Extensions to" linear programming are treated in five
chapters. The first explains the valuable concept of Wolfe’s
generalized programming scheme. There follows an excellent
chapter on the decomposition of linear programs. This
includes a short play in which Staff, who hates details, and
his economist friend, F. M. Dalks, use the decomposition
principle to get Sub to buy the right number of tankers. It
also includes a section on the use of the decomposition prin-
ciple for central planning without complete information at the
centre.

A chapter on convex programming includes mention of
separable and quadratic programming. There is a chapter
on uncertainty, at the start of which the reader is warned that
the treatment is necessarily fragmentary as few problems have
been solved in this area. Lastly there is a chapter on integer
programming which includes a good description of Gomory’s
method of integer forms but is otherwise mainly a survey of

problems which can be put into integer programming form.

In places a number of exercises are suggested to the reader,
and many chapters end with a list of problems, a few of which
are marked as unsolved.

In his opening sentence Professor Dantzig states firmly that
the final test of a theory is its capacity to solve the problems
which originated it. Therefore it is surprising to find that he
pays so little attention to the implementation of linear pro-
gramming techniques on digital computers. Whilst there is
an elaborate discussion on perturbation techniques which is of
great theoretical interest, there is virtually no mention of the
perturbation through rounding errors which occurs in all
numerical work, nor of the effect which such errors can have
on the course of the calculations.

In the detailed iterative procedure given for the two-phase
simplex method there is no mention of the tolerance on zero
which must be allowed because of rounding errors, and with-
out which the procedure can fail to terminate correctly. The
flow diagram given of the simplex method is by no means the
most suitable for direct implementation on a computer. The
“product form of the inverse” algorithm, which is nowadays
most commonly used for large-scale linear programming
calculations, receives such a brief mention on page 200 that it
is not to be found in either the list of contents or the index.
For these reasons the book is not recommended as a hand-
book for programming linear programming calculations for
computers. A good book for that purpose has yet to be

written. MARTIN FIELDHOUSE.
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