Function minimization by conjugate gradients

RuTisHAUSER, H. (1961).
Goodman, R. (Ed.), Pergamon Press.

“Interference with an ALGOL procedure” in Annual Review in Automatic Programming, Vol. 2,

SHAH, B. V., BUEHLER, R. J., and KEMPTHORNE, O. (1961). “The method of parallel tangents (Partan) for finding an optimum,”

Office of Naval Research Report, NR-042-207 (No. 2).

Smith, C. S. (1962). ““The automatic computation of maximum likelihood estimates,”” N.C.B. Scientific Department Report,

S.C. 846/MR /40.

Book review: ALGOL on the KDF9

ALGOL 60 Implementation, by B. RANDELL and L. J. RUSSELL,
1964; 418 pages. (London: Academic Press Inc., 84s.)

The authors’ intention in writing this book is to present a full
description of their implementation of ALGOL 60 on the
English Electric KDF9 computer. This aim has been most
admirably fulfilled, both in the general description of the
methods they have used, and in the detailed flow charts from
which their programs were coded.

The general technique of implementation was based on the
work of E. W. Dijkstra and J. A. Zonneveld, who wrote the
first ALGOL 60 translator for the X1 computer at the Mathe-
matical Centre, Amsterdam. The translator is built up of a
number of routines, each of which processes one of the de-
limiters of the language. Each routine ends with a transfer of
control to the basic input routine, which reads in and assembles
the source text as far as the next delimiter, and passes control
to the corresponding delimiter routine to process it. Many of
the delimiter routines make use of a global stack for the stor-
age of information which will be needed later by another
routine. The stack mechanism is admirably suited for dealing
with recursively structured languages such as ALGOL, in
which expressions, and even statements, may be bracketed one
inside the other to any depth. However, the method chosen
for specifying the use of a stack seems rather clumsy, since all
operations of pushing information down on the stack and
restoring it again when required have been inserted as explicit
instructions in the flow charts. A more elegant way of using
a stack is to write the translator as a set of procedures which
can call each other and even themselves in a recursive manner;
in this case, the whole of the stack administration is incor-
porated behind the scenes in the procedure entry and exit
mechanism. In a recursively organized translator, each pro-
cedure can be designed to process the whole of an ALGOL
syntactic entity, rather than a single delimiter. This makes it
possible to abolish many of the markers which otherwise have
to be set, stacked, unstacked and tested in order to establish
context in the source program. Since the ALGOL language
recognizes the usefulness of recursion, it seems a pity that an
ALGOL translator should deny itself the benefits which it
makes available to others.

The implementation of an advanced programming language
involves a great deal more than translating it, since a consider-
able amount of book-keeping must remain to be done at run-
time; and the specification of control routines to perform this
task is a major part of the implementation. The division of
labour between the translator and the control routines is one
of the most characteristic features of any system. The
authors have chosen to simplify the task of the translator as
much as possible, and to place a correspondingly heavy bur-
den on the control routines. In fact, the object program pro-
duced by the translator is not even framed in the KDF9
machine code at all, but in a sort of idealized machine code,
specially suited to the needs of ALGOL; and the control rou-
tines have the job of interpreting this code at run-time in order

154

to execute the program. The main justification for this use of
interpretation is that the system is designed for use in program
testing. It is therefore most important that the translation
process should be as fast as possible, since the programs are
likely to be altered every time that they are run. in addition,
interpretation makes it possible to include some extremely
powerful facilities for diagnostic printout at run-time.

As far as the reader of the book is concerned, the use of the
idealized machine code is of great benefit, in that the descrip-
tion is almost entirely computer independent, and in no way
involves the particular idiosyncrasies of the KDF9 machine
code. This will be of particular interest to prospective im-
plementors of ALGOL, who may wish to use the same flow
charts on a different computer, as has already been done on
three other machines, Deuce, Pegasus and ACE. However,
as the authors point out, the use of interpretation involves a
very severe penalty in efficiency at run-time, which is likely to
be tolerated only during program checkout; and it is expected
that a fully tested program will be retranslated by a more com-
plex compiler into KDF9 machine code. In the absence of
such an alternative compiler, the prospective implementor
would be well advised to produce object programs in the
machine code of the computer on which he is working.

The presentation of the idealized machine code will also be
of great interest to prospective designers of future machine
codes, for it points clearly the direction in which they must
orient their design. It is becoming more obvious that the
power of modern computers cannot be fully exploited with-
out the use of advanced symbolic programming languages;
yet at present, the use of these languages involves a consider-
able expense, either in a lengthy process of optimization, or
in the inefficiency of object program. It is therefore a matter
of urgent practical economics that computer designers should
pay close attention to the needs of implementors and users of
symbolic programming languages.

An even greater contribution is the clear and detailed
manner in which the authors explain the nature of the prob-
lems they encountered, and the way in which they tackled
them. The book should be read with the utmost intcrest by
all programmers who are concerned with the development and
use of automatic programming languages, and, in particular,
those who have not themselves had the opportunity of im-
plementing such a language. For the benefit of this class
of reader, the book includes a brief but competent survey of
other published techniques, and a comprehensive bibliography.

The authors must be highly praised for the delightful clarity
of their English prose. The writing of the book has obviously
been a pure labour of love, and the effort and care which has
been expended on it at least equals that spent on the programs
which it describes. In spite of the immense wealth of detail,
the main thread of the description isalwayskepttothefore;and
as an exercise in the documentation of a complex algorithm,
a standard has been set that will not readily be equalled.

C. A.R. HOARE.

¥202 I4dy 0L uo3senb Aq gLEGEE/YS L/Z/L/e1o1e/|UulWwoo/wod dnorojwepee//:sdiy wolj pepeojumod





