User’s experience of COBOL

By 1. M. Golds*

This paper, and the two following ones by T. H. Ayre and M. Richardson, were presented at
the opening session of the symposium on Practical Experience with Commercial Autocodes
held in London on 25 March 1964 by the Advanced Programming Study Group of the B.C.S.
These three papers briefly describe the experience, with commercial automatic programming
systems, obtained by computer users in three Government departments.

The programs

The IBM 705 Mark 2 computer used for the production
of results from the 1961 Census of Population has
magnetic tape input and output and a core-storage of
40,000 character locations, using a binary-coded decimal
representation with variable-length words but a fixed
length for instructions; a card-reader is available on-line
at the installation. Programs for the major part of
the work, including the tabulation of figures for publi-
cation in County reports, were written in a machine-
oriented language—Autocoder—which was basically a
system of one-for-one mnemonic codes for each machine
instruction, with some simple macro-instruction facilities.
In addition to the tabulations at county level, Census
results are published in national reports on particular
subjects. Tabulating the figures by computer for the
national tables, which number about one-hundred-and-
fifty, presented a problem to the programming team.
When tested the programs would only be used for two
production runs, giving a very small return for the time
spent on them by the programmers. There was clearly
a need to keep the time required for writing and testing
the programs to a minimum, and COBOL 61 was intro-
duced in the hope of achieving this. Since the programs
were only to be run twice it was not of primary impor-
tance that the object programs should require the opti-
mum amount of running time; the similar county
tabulations required on average about half the available
memory space in the computer, therefore economic use
of core-memory was not a critical factor.

In general the tabulation programs have single tape
input, the records consisting of the basic counts of
figures needed for a substantial number of tables. Out-
put is also written on to a single tape, in card-image
records containing the figures for one table in report
format, together with codes for controlling the action
of the IBM cardatype machine which is used to print
out the tables from the cards when punched. The
figures may be obtained directly from the Input records
or derived by calculations.

A team numbering three to four programmers has
been writing these programs over the past twelve months.
Programs for about forty tables have so far been com-
piled; they consist on average of 200-250 statements in
the Procedure Division.

Adequacy of programming facilities

The compiler provided by IBM makes use of an
existing, more advanced version of the Autocoder
assembly program, translating the COBOL source-
program into Autocoder macro-instructions as an
intermediate stage. It has one notable limitation for us,
namely that it does not provide for the translation of
COBOL entries referring to tape input or output for
the mark 2 version of the 705; we have therefore incor-
porated our own existing and tried Autocoder Input-
Output routines. Because Autocoder is so much
involved, and in the absence of a satisfactory system of
source-program debugging, a knowledge of Autocoder
has been essential for the programmers.

Some of the editing features have also not been
available to us; one of these in particular—namely a
floating minus sign at the left end of a numeric field—
would have been very useful. We would also have liked
a facility for placing a dash in numeric fields when the
value is zero, but this is unlikely to be provided in any
version of COBOL.

Many of the features provided have been particularly
useful in the tabulation programs. Much use has been
made of the subscripting facility in conjunction with the
“occurs” clause, especially in referring to the series of
counts in the input records. The “move corresponding™
option and some of the available editing features have
been helpful in setting up output records. The “picture”
clause has been used throughout the Data Divisions
because it provides a very necessary shorthand method
of describing the attributes of data-items. The
“compute” verb is another useful form of shorthand.
Finally, of course, we have been very glad of the pro-
vision for entering another language.

Training

A formal course which was given to the programmers
lasted 9 mornings; all the programmers attending this
had some varying amount of previous experience in
writing and testing Autocoder programs. In general,
after the course the programmers had a working grasp
of COBOL and were able to produce satisfactory pro-
grams straight away, speeding up after completing their
first.

* General Register Office, c/o The Royal Army Pay Corps Computer Centre, Worthy Down, Near Winchester, Hants.

20z udy 61 U0 1s8nB AQ 0GEE/66/2/L/2101ME/|UlWO0/W00" dNO"oIWSPEdE//:SARY WOy Pepeojumod



COBOL

Writing source programs

It has been difficult to assess how much time COBOL
has saved at the program-writing stage. If flow-charting
is carried out in sufficient detail to cope with all the
logic involved, coding the Procedure Division takes
noticeably less time than with Autocoder; but this means
that time spent on the flow-chart is as long. Writing
the data definition entries takes some time, principally
because there is always a substantial amount of rede-
fining to be done to enable the data to be handled
efficiently in all parts of the Procedure Division. Saving
in writing time has been achieved, then, only at the stage
of coding the program steps. However, COBOL source
programs are very easy to read and this aids the desk-
checking operation considerably; it also means that
there is no need to write a description of the action of
the program when completing the documentation.

There is one drawback at the program-writing stage
which should be mentioned here. It is possible to make
errors in COBOL entries by offending against some of
the many conventions of syntax and punctuation without
being aware of it; some compound conditional expres-
sions are a particular source of confusion in this respect.

Compiling the programs

The compiler is constructed to process programs in
two stages. In the first it translates the COBOL para-
graphs into series of Autocoder macro-instructions, and
also lists diagnostic error messages; this run is repeated
(usually once) until the messages are cleared. The
second stage is a modification of the Autocoder assembly
run, expanding the macro-instructions and assigning
memory locations. We had to write our own program
to make the output of the first stage acceptable as input
to the Assembly stage, as there was otherwise no pro-
vision for this and the first stage had to be run again
unnecessarily once the program was corrected, in order
to lead into the second part. This modification we
have made to the compiling procedure has resulted in
some trouble with unrecognized operands, and in any
case means that the final printed output is in two listings.

Computer time needed for compiling has proved to
be ten times that required to assemble similar programs
in the basic version of Autocoder, but part of this
expansion factor is accounted for by the time taken by
the more high-powered version of Autocoder used. A
tabulation program taking 20 minutes for a basic Auto-
coder Assembly would take 1 hour 20 minutes assembly
time using the more advanced form. This, coupled
with 1 hour taken up by each run of the first (translation
and diagnosis) stage of compilation, would result in
3 hours 20 minutes being required to compile an average
program.

With all the various options which the compiler must
allow for, we are still finding it possible to compose
entries which it fails to cope with correctly, and even
some which reveal restrictions we had not heard of.
About twenty-five per cent of our object programs have

100

contained some minor compiling error, and there has
been a steady stream of corrections to the compiler from
IBM.

Testing

The procedure used for testing relies on a series of
utility programs and provides for applying corrections
to the object program from patches punched into cards,
using machine-codes, and for obtaining a print-out of
memory and output-tape records at the end of a test.
The prints are examined in conjunction with the listings
of the source- and object-programs.

Testing time has been significantly reduced; quite a
number of programs have required only three or even
two tests, although most have taken more than that.
Even ten tests would be a good saving compared with
the number we needed for Autocoder programs. There
are two reasons for the improved testing time: COBOL
virtually eliminates all errors in the object program
other than those of logic or results of the programmer
misunderstanding a convention, or possibly of a compiler
fault. Also, at least with the compiler which we have
experienced, it is conducive to error-free patching
because the set of machine instructions generated for
each COBOL statement is self-contained, and this
reduces the likelihood of patches relating to one routine
affecting another.

Object programs

The object programs have two major defects, which
were expected: they are uneconomic of memory space,
and running time is prolonged. Some of the sequences
of machine instructions have contained completely
superfluous steps. Varying subscript data-names is
particularly inefficient, as routines to calculate sub-
scripted addresses are sizeable and have to be executed
for each variation of the subscript; a facility for direct
address modification, instead, would save time and
memory space.

Even with COBOL, intelligent programming can have
an effect on the time taken to run object programs.

Comparing a county tabulation program written in
simple Autocoder, which filled half of core-memory,
with the COBOL program for the equivalent national
table which was written by the same programmer, the
expansion factor appears to be about one third, So
far only two of our programs have had to be clipped
in order to fit the capacity of the computer, but if
COBOL were more economic of space we could have
made more of our programs cope with more than one
table and thus saved computer time and even some
programmers’ time.

Conclusion

Considerations of memory space and computer time
would have been much more decisive factors in applying
COBOL to the programs for the earlier stages of the
Census operation. The principal aim in introducing it

20z udy 61 U0 1s8nB AQ 0GEE/66/2/L/2101ME/|UlWO0/W00" dNO"olWSPEdE//:SARY WOy POpeojumod



COBOL

for the national tabulations, namely to save pro-
grammers’ time, has been achieved. The programmers
themselves find it cuts much of the tedium out of their
work, and they are now trained in a programming
language which could be used for a later Census even

when a change of computer is necessary. The programs
could also be used in the future without being extensively
rewritten, and the ease with which they can be read
should be helpful when any amendments have to be
made.

User’s experience of RAPIDWRITE

By T. H. Ayre*

The Ministry of Public Building and Works uses an
1.C.T 1301 with 2,000 words of IAS and 24,000 words of
drum storage, to which are fitted eight one-inch mag-
netic-tape units operating at 90,000 c.p.s. The work
already being done or in an advanced stage of prepara-
tion includes payroll, stock-control, payment of accounts
and the processing of statistical returns from the building
industry. In all, some 40 or 50 different regular runs are
or will shortly be in use, and the total amount of program
is accordingly considerable.

RAPIDWRITE

ICT RAPIDWRITE is closely based on COBOL, the
major differences being that the procedure division is
written and punched on dual-purpose cards, that names
are restricted in length to five characters and that, in
the version available when we were using the language,
no facilities were offered for processing magnetic tape.

Ease of use

In our experience the degree of ability required to
produce satisfactory programs is as great in RAPID-
WRITE as in machine language. The writing time also
seems to be comparable for both methods. This is to
some extent due to the absence of tape facilities, which
necessitates the writing of considerable amounts of
machine-language program before any RAPIDWRITE-
based program is usable.

For data divisions of any complexity the restriction
on the length of data names enforces the use of extreme
abbreviations, which are often as meaningless to the
uninitiated as would be machine-language addresses.
The absence in RAPIDWRITE, as in COBOL, of
facilities for sorting, merging or searching files would
in any event severely restrict the usefulness of these
languages for commercial purposes.

The facility for specifying the content of a print line
in plain language, and having the line arranged and
printed without further effort would be of great assistance
if it were possible to isolate it from the less desirable
features, especially as there are no built-in aids to the
programmer for this purpose.

The compiler which we have is designed to operate
on a non-tape 1301 with only 400 words of IAS, and is
wasteful of computer capacity when compiling is done
on a much larger computer. Compiling time is of the
order of three to four hours for average programs, even
after we have modified the compiler to produce its
object program direct to magnetic tape instead of in the
form of punched cards.

The printed object program produced is in pure
machine language, and indeed is of necessity relativised
in a form somewhat more involved than a machine-
language programmer would willingly use.

Debugging of logical errors can be done in RAPID-
WRITE only at the cost of a full recompilation and the
“refitting” of all the machine-language tape routines.
For this reason all debugging is done by machine-
language patching of the object program, and all pro-
grammers therefore need an adequate knowledge of
machine-language methods.

Ease of debugging

It is undoubtedly true that the absence of clerical
errors and storage misallocations in compiled program
reduces the number of proving runs necessary with a
RAPIDWRITE program. On the other hand the
difficulty of following the compiled interpretation of the
source program may mean that a longer time elapses
between one proving run and the next. On balance the
first factor seems to outweigh the second, so that a
fully-proved program may be expected appreciably
sooner after the first test of a RAPIDWRITE program
than would be the case with a comparable machine-
language program.

Use of storage

The total volume of program produced by RAPID-
WRITE is inevitably greater than that of a program
written directly in machine-language. The only direct
comparison we have been able to make showed a use
of about 6,000 words of storage for RAPIDWRITE
as against about 1,500 words for machine language.
The job in question is described in the next Section.

* Ministry of Public Building and Works, Accounts Division, Lambeth Bridge House, London, S.E.1.

20z udy 61 U0 1s8nB AQ 0GEE/66/2/L/2101ME/|UlWO0/W00" dNO"olWSPEdE//:SARY WOy POpeojumod



