A programmer’s utility filing system

By M. V. Wilkes*

A modern trend in computer organization is to provide facilities for a user to keep on magnetic

tape or on a disc file all the information that he is likely to require in the immediate future.

This

includes current programs, old programs likely to be required again, and data of all kinds. PUFS
is a system by which a user can create, edit, and up-date files of information which are stored on a
magnetic medium in a form which is an exact image of the form in which they are written on paper.

The object of the Programmer’s Utility Filing System
(PUFS) is to provide the programmer with a means of
storing on magnetic tape, or on a disc file, all the pro-
grams and data that he is making use of in his current
work, and to reduce to a minimum the quantity of
punched paper tape, or punched cards, that is used. The
system is inspired by certain features of the Compatible
Time-Sharing System (CTSS) in use experimentally at
M.LT., although the M.LT. system, of course, also
gives the user very much more, namely, direct access to
the computer (Corbaté et al., 1963). PUFS has been
implemented for EDSAC 2, and it is this implementation
which will be described.

As in CTSS, the full flexibility of working to which
the programmer is normally accustomed, is retained by
arranging for the storage of information within the
computer in the form of an exact image of that in which
it is normally written or printed. In particular, one can
store programs written in any programming language,
and the system is to be distinguished from systems
designed for the up-dating of programs written in
particular languages. In PUFS, programs and data
are originally punched on paper tape, but are then
stored on magnetic tape in the same character-by-
character form in which they appear when the input tape
is printed on a teleprinter, except for the presence of
line numbers, which do not necessarily exist in the
original punched form. Once information has been
read into the machine and converted into a file on
magnetic tape, it can be used repeatedly by programs
as though it were being read in for the first time, and
editing of the sort that normally requires the preparation
of up-dated paper tapes can be carried out wholly
within the computer, only new information being
punched.

PUFS is operated by a series of commands, which are
read from the input tape under the control of the system,
and then executed. A number of commands may be
punched on the same tape and will be executed in
sequence.

An INPUT command must be followed by a punched
version of the document that it is desired to take into
the machine. Normally, the lines of the document in

its original form are unnumbered, and PUFS assigns
numbers to them on input; if desired, however, some or
all of the lines may have line numbers punched along
with them, and in this case these line numbers take
precedence. When input is complete, the lines are
sorted into increasing numerical order of line numbers.
If two lines have the same number, only that which had
its number punched along with it is retained. If the
punch operator has given the same number to more
than one line, all but the last to be read into the machine
are discarded. These provisions enable errors and
omissions made during the punching of a document to
be rectified without altering what has already been
punched. Blank lines, that is, lines with a number but
no information, are removed altogether, and this
provides a means of deleting unwanted lines.

The line numbers also enable corrections or modi-
fications to be made to a document already stored on
magnetic tape. In order to make insertions possible
without renumbering, the line numbers, when first
introduced, start at 10 and go up in steps of 10. A
MODIFY command is followed by the additional or
corrected lines that are to be incorporated into the file.
These lines must all be numbered and any lines acci-
dentally left unnumbered will be ignored. On input
to the computer the lines are arranged in numerical
order and the redundant lines eliminated as for a
primary document. The lines from the modification
tape are then sorted in order with those of the file;
where lines with the same numbers exist in both the
file and the modification tape, those from the latter
replace those in the former. As in the case of primary
input, blank lines are eliminated.

Commands are provided for splitting files into two,
and for joining two files together to make one. In the
latter case, re-numbering of the combined file takes place
automatically. Re-numbering can also be initiated as a
special operation when desired. Files may be printed,
either as they stand with line numbers, or with line num-
bers suppressed. The former will naturally be preferred
when further editing has to be done.

An EXECUTE command enables assembly-language
programs stored on magnetic tape to be run exactly as

* Director, University Mathematical Laboratory, Corn Exchange St., Cambridge.

180

¥202 Iudy 61 U0 3senb Ag 208€E L ¥/08L/E/.L/e1o1e/|ulWwoo/wod dnosojwepeoe//:sdiy wolj pepeojumod



PUFS

they would be using direct input from paper tape. Asa
particular case, the program activated by an EXECUTE
command may be a compiler for a higher level language,
thus making it possible to use PUFS for programs written
in that language. An EXECUTE command is followed
by a list of files containing the program and data on which
it must operate. Both program and data may, if neces-
sary, extend over several files. It should be noted that an
EXECUTE command causes control to pass from the
PUFS system to the program to be executed and that, as
at present implemented, the PUFS system has no way
of regaining control. Control, may, however, be sent
back tothe PUFS system by orders placed in the program.

The magnetic-tape filing system

PUFS makes use of two magnetic tapes. Tape 1 is a
system tape on which is recorded an executive sub-
routine, and various permanent files such as assembly
routines and compilers. Tape 2 holds all the other
files that the user has created, and the file directory.
The file directory gives for each file a tape number and
the number of the block on that tape at which its start
is to be found.* File numbers are allocated by the
user and lie in the range 1 to 2,047. Whenever a new
file is added, it is written on the tape after the files
already existing, and its number is added to the directory,
along with the number of the block in which it starts.
The same thing happens when a file is modified by the
process described above; the old file is not erased, but
the modified version is added to the collection of files
as though it were a new file altogether. As a result, the
file directory may contain several entries for a given
file number. If the user refers to a file simply by its
number, e.g. 27, the executive routine will automatically
select the latest version; the user may, however, refer to
earlier versions, if he wishes, by writing, for example,
27 1 or 27 3, which refer, respectively, to the last
but one and the last but three versions of file number 27.
Either the latest version of a file or a specified earlier
version may, at the user’s pleasure, be given a new
number.

The user may, at any time, edit his file directory by
deleting references to specified files or versions of them;
whenever this is done, references to all earlier versions
of the same file are automatically deleted as well. Note
that the editing operation does not itself erase the
unwanted files from the magnetic tape.

During the operations that have been described above,
the executive routine and the file directory are held in
the high-speed store. Since some of the operations
bring about alterations in the file directory, it is necessary
that, when all the operations have been performed, the
up-to-date version of the file directory should be recorded
on the file tape. This may be brought about explicitly

* In the EDSAC 2 magnetic-tape system, block marks and
block numbers are pre-recorded on the tapes. Each block holds
up to 50 words, but the routine used for recording information

automatically makes use of as many blocks as are required. Thus
a tape constitutes an addressable memory.

181

by the use of a DUMP command, or, automatically, by
an EXECUTE command. In both cases, the number of
the block on the magnetic tape at which the file directory
is dumped is printed out for the information of the user.
The executive routine keeps account of all dumps that
are made and prints this count in front of the block
number. This is intended to be an aid to the pro-
grammer in keeping track of his output sheets, and may
be regarded as a substitute for the printing of the date
and time, which is not possible on EDSAC 2 since there
is no clock.

The file tape may contain a number of file directories
that have been dumped at different times. Normally the
user will wish to restart with the latest file directory,
and it is arranged that the block number at which this
is to be found is recorded in a block reserved for that
purpose at the beginning of the system tape. This is
the only use—and not an essential one—made in PUFS
of the facility available in EDSAC 2 for re-using an
individual block on the magnetic tape. If the user
wishes to go back to an old file directory, he may do
this by making use of the knowledge available to him
of where that directory is stored.

From time to time a user may ask for a fresh tape to
be prepared by copying the old one. When this is done
only files, or versions of files, whose numbers occur
in the most recent version of the file directory are copied.
Copying thus provides a way of dropping from the system
files that are no longer required. If the old tapes are
kept it is always possible to recover a former situation
if this proves necessary, for example, on account of
machine malfunctioning. In the present version of the
system, copying of tapes is done by a special program
and not by means of a PUFS command.

The commands

A PUFS command causes one of the following actions
to take place:

(1) A file to be loaded into memory from paper tape or
magnetic tape.

(2) A file loaded in memory to be given a number and
copied on to magnetic tape.

(3) The file loaded in memory to have an operation per-
formed on it (e.g. a modification or splitting).

(4) An alteration to be made in the file directory.

The commands that have been implemented so far
are as follows:

Load a file into memory from
paper tape with corrections
incorporated; the file is
punched immediately after the
command. Line numbers are
indicated by having a special
symbol punched in front of
them (in the EDSAC 2 imple-
mentation a suffix |, is used).

INPUT. |

¥202 Iudy 61 U0 3senb Ag 208€E L ¥/08L/E/.L/e1o1e/|ulWwoo/wod dnosojwepeoe//:sdiy wolj pepeojumod



PUFS

LOAD. Ni| Load file N (version i) from
magnetic tape. If the file is
not in the file directory the
report FNF (file not found) is
printed.

FILE. N/ Copy the loaded file on to
magnetic tape and make the
appropriate entry in the file
directory.

PRINT. Print the loaded file starting at
line number n and finishing
with line number m. If m is
omitted, printing starts at n
and continues to the end, and
if both n and m are omitted
the whole file is printed.

nm|

PRINT SUPPRESSED. nm |/
As PRINT but omitting line
numbers.
MODIFY. / Incorporate in the loaded file
the corrections punched imme-
diately after the command.
A copy of the corrections,
arranged in order of line
numbers, is printed for record
purposes.
APPEND. Ni |/ Attach the file N (version i)
to the end of the loaded file
and re-number the augmented
file thus obtained.
PREFIX. Ni/ Attach file N (version i) to
the front of the loaded file and
re-number the augmented file
thus obtained.
DETACH TAIL. n/ Shorten the loaded file by
removing all lines from n
onwards (the tail). The tail
ceases to be part of the loaded
file, but is preserved for use if
required.

Load the tail left over from a
previous DETACH TAIL
operation. The file previously
loaded is lost. If there is no
tail the report NT (no tail) is
printed.

USE TAIL. |

RENUMBER. |/ Re-number in sequence the
lines of the loaded file, starting
with number 10 and going up

in steps of 10.

182

DELETE. NiMj.../ Removefrom thefiledirectory
file N (version i), file M
(version j), etc. All earlier
versions of deleted files are
also deleted.

PRINT FILE LIST. / Print the file directory.

Gives the new name M to file

N (version i). If the file

cannot be found the report

FNF is given.

RENAME. NiM|

DUMP. /| Dump the PUFS file direc-
tory. After execution the
serial number of the dump
and the number of the first
block in which it takes place

are printed.

EXECUTE. N, i, N,
iy My ji Myjy...]

Dump the PUFS file direc-
tory; assemble and execute
the program in files N, (ver-
sion i;), N, (version i,), etc.,
using data from the files M,
(version j,), M, (version j,),
etc. Just before execution,
the serial and block numbers
of the PUFS dump are
printed, followed by the com-
mand itself. If any of the
files cannot be found, the
report FNF is printed.

Commands are read from the input tape one at a time
and executed. After execution, a copy of the command
is printed; this is intended as an indication that, as far
as the PUFS program can tell, execution has been cor-
rectly performed. EXECUTE is an exception in that
the command is necessarily printed before execution.

If a command cannot be recognized, the report E is
printed followed by a copy of the command.

Experience with the use of the above commands has
suggested that it would be convenient to have a com-
mand which enabled the user to re-number a selected
section of a file and to re-sort the lines according to the
new numbers. This, together with a command for
merging two files and re-ordering the lines according to
their numbers, would enable new sections to be intro-
duced into the middle of a file, or an existing section to
be moved from one place to another, with a minimum
of trouble.

Implementation

PUFS was implemented for EDSAC 2 using the
WISP list-processing system (Wilkes, 1964). Characters
are read by a modified WISP input routine which converts
them to an internal 6-digit code, without, however,
ignoring spaces after the first or equating commas and

¥202 Iudy 61 U0 3senb Ag 208€E L ¥/08L/E/.L/e1o1e/|ulWwoo/wod dnosojwepeoe//:sdiy wolj pepeojumod



PUFS

carriage returns as is usual in WISP. For the purpose
of storage on magnetic tape, characters are packed six to
the word, machine-code packing and unpacking routines
being provided. When loaded into the main store, lists
are stored as ordinary WISP lists with each character
occupying the CAR of a separate register. Line numbers
are expressed in binary form and also occupy the CAR
of a register; when a file is transferred to magnetic tape,
however, the line numbers are converted to decimal and
stored in character form in WISP code. This is in
accordance with the principle that the files as held on
magnetic tape are images of what might be printed on a
piece of paper.

The number of characters that can be contained in a
file is limited by the capacity of the main store, and a
large improvement could be made if the WISP system
were modified so as to permit the storing, in simple lists,
of more than one character per word. However, since
the EXECUTE command can take its input from more
than one file, no difficulty arises if very long files are
split up into a number of sub-files.

Example

The following example shows how the system might
be used for keeping lists of members of a society. This
example is chosen for its simplicity, and to emphasize
that the information is stored in a form quite independent
of any meaning it might have, for example, in a pro-
gramming system. Line numbers are indicated here by
having # printed in front of them; in the EDSAC 2
implementation a suffix |y is used. Explanatory com-
ments are given on the right.

INPUT. |

MEMBERS

F. BAKER

J. BROWN

C. A. JONES

S. ROBINSON
T. L. SMITH

A. W. STUART
S. T. WILLIAMS

Original document

#35 K. A.JOHNSON Correction of errors made in
#70 A.W.STEWART course of punching

*kk

PRINT. |/ Copy for checking
FILE. 10/
INPUT. /|

ASSOCIATE MEMBERS

A. BIRD

T. A. DICK

A.S. JOHNSTON
T. E. YOUNG

Second original document

* k%

PRINT. / Copy for checking
FILE. 11/
LOAD. 10/
MODIFY. /|
#32 T.JACK Routine updating of file (two
#65 V.SMITH insertions and one deletion)
#40
*okk

RENUMBER. |

PRINT. /

FILE. 10 /

APPEND. 11/ Combination of two files

PRINT Fair copy (without line
SUPPRESSED. | numbers)

DUMP. |

%

When run on the computer the above PUFS program
produces the following output. It will be remembered
that PUFS prints a copy of each command after any
output produced by that command.

LOAD PUEFS
INPUT.

10 MEMBERS

20 F. BAKER

30 J. BROWN

35 K. A. JOHNSON
40 C. A. JONES

50 S. ROBINSON
60 T. L. SMITH

70 A. W. STEWART
80 S. T. WILLIAMS

PRINT.
FILE. 10
INPUT.

10 ASSOCIATE MEMBERS
20 A. BIRD

30 T. A. DICK

40 A. S. JOHNSTON

50 T. E. YOUNG

PRINT.
FILE. 11
LOAD. 10

32 T. JACK
40
65 V. SMITH

MODIFY.
RENUMBER.

10 MEMBERS
20 F. BAKER
30 J. BROWN

¥202 Iudy 61 U0 3senb Ag 208€E L ¥/08L/E/.L/e1o1e/|ulWwoo/wod dnosojwepeoe//:sdiy wolj pepeojumod



40 T. JACK

50 K. A. JOHNSON
60 S. ROBINSON
70 T. L. SMITH

80 V. SMITH

90 A. W. STEWART
100 S. T. WILLIAMS

PRINT.
FILE. 10
APPEND. 11

MEMBERS

F. BAKER

J. BROWN

T. JACK

K. A. JOHNSON
S. ROBINSON
T. L. SMITH

V. SMITH

References

CorBATO, F. J., et al. (1963).
WILKES, M. V. (1964).

PUFS

A. W. STEWART
S. T. WILLIAMS

ASSOCIATE MEMBERS

A. BIRD

T. A. DICK

A. S. JOHNSTON
T. E. YOUNG

PRINT SUPPRESSED.
1301 987 DUMP.

Acknowledgements

I would like to express my thanks to Mr. J. D. Blake who
made contributions to the later stages of the development
of PUFS, and also to Mrs. V. Bayley who assisted with the
checking out of the system on the EDSAC. This paper was
presented at the International Symposium on Data Proces-
sing Machines held in Prague in September 1964. I am
grateful to the organizers of the Symposium for allowing it
to appear in The Computer Journal as well as in the
Proceedings of the Symposium.

The compatible time-sharing system; a programmer’s guide, M.1.T. Press.
“An experiment with a self-compiling compiler for a simple list-processing language,

LX)

Annual

Review of Automatic Programming, Vol. 4, Pergamon Press Ltd.

Book Review

Computers and Thought. Edited by EDWARD A. FEIGENBAUM
and JuLIAN FELDMAN, 1963; 535 pages. (Maidenhead:
McGraw-Hill Publishing Company Ltd., 62s.)

One of the most interesting and yet intractable points of both
popular and professional discussions about computers is
whether machines can, or conceivably could, “think”.
Unfortunately it is still necessary to put that last word in
quotation marks as we have no agreed definition of the term.
Several of the authors represented in this volume attempt that
definition, the consensus being an ostensive definition which
may be roughly stated as “‘behaviour indistinguishable from
that of a human being under the given circumstances, if that
behaviour on the part of a human being would be characterized
as thought.”

The present volume is a collection of the most notable
papers on the study of thought processes by means of highly
structured computer programs. The editors label this
approach that of “‘cognitive models’” and explicitly exclude
work along the lines of self-organizing systems, ‘‘neural
cybernetics”’, or homeostatic models. Whatever one’s
opinion of this or that approach the extent to which the
experiments reported here have met with success is indeed the
most lasting impression.

The 20 papers report on experiments in artificial intelligence
that attempt both to simulate and to emulate human thought
processes, and also include some papers that survey the
problems and successes of the attempts. Additionally, the
editors have included their own commentary to the several
sections of the volume, a great help to the lay reader in

184

following the relationships of the various projects described,
and have appended an extensive bibliography of some 900
entries that is meticulously indexed under about one hundred
descriptors (topic headings). This last was prepared by
Marvin Minsky.

Not so long ago it may have been safe to say that research
into artificial intelligence, whilst of vast interest, could yield
little by way of immediate results of profitable application.
Certainly the majority of the papers are concerned with game
playing (chess and draughts), theorem proving, and similar
intellectual pursuits, but two papers are far more mundane.
That by Tonge on line balancing for assembly processes is the
more advanced and therefore the more impressive. At the
time of his report, first published in 1960, his program was
already able to find a practical solution to balancing an actual
70-station assembly line in the appliance industry. If his
program were implemented on a current-generation machine
(JOHNNIAC was in fact used) it would be faster and probably
cheaper than a human solution by a skilled and experienced
manager. In the other paper on profitable applications
Clarkson reports on a model designed for portfolio selection
for investment trusts. At the time of publication this was
not yet ready for use. Both papers are included in the volume
because they use a heuristic rather than algorithmic approach.

Primarily this is a book for the library or for the specialist.
Its value is greatly enhanced by the ample bibliography and by
the care taken by the editors to relate their selections to each
other and to their place in the field.

H. D. BAECKER

¥202 Iudy 61 U0 3senb Ag 208€E L ¥/08L/E/.L/e1o1e/|ulWwoo/wod dnosojwepeoe//:sdiy wolj pepeojumod



