Automatic segmentation of programs for a two-level store computer

By F. H. Dearnley and G. B. Newell*

This paper is based on a similar paper of the same title presented at the Joint Computer Con-
ference held in Edinburgh 31 March-3 April 1964. It presents a new algorithm for the segmen-
tation of programs produced for a two-level store computer. This algorithm is efficient both
in its operation and in the results it produces. The presentation takes the form of a description
of the program which applies the algorithm.

Introduction

The use of two-level stores as computer memory intro-
duces extra programming effort and some loss of
efficiency due to the inter-level transfer. The loss of
efficiency can be combated by the use of autonomous
transfers. This paper presents a software solution to
the former problem, which allows the programmer to
treat the machine as if it had a single-level program store.
This solution is an efficient automatic segmentation
scheme.

Clearly such a scheme should not exist in isolation, but
should form the final phase of a compiler or assembler.
Under such considerations the segmentation scheme has
been designed to accept programs in the form of a string
of pseudo-orders backed by some tables. This is the
normal form of intermediate stage produced by compilers
and assemblers.

For the segmentation scheme to be acceptable it is of
major importance that its object programs have running
times comparable to those of the equivalent programs
produced (and segmented) manually. Furthermore, for
the segmentation process to be used within an assembler
—particularly within a “load and go” assembler, it is
important that the process be economical in its use of
time and computer storage. The scheme satisfies the
former criterion since all object program loops which
can fit within a single block of program are so contained.
The latter criterion is also satisfied since the process is
one-pass and requires only a limited portion of the
source program to be in the store at any one time.

Factors affecting segmentation

The task of segmenting programs is similar to that of
batching data on magnetic tape—with the customary
single exception. This exception is manifested in the
treatment afforded to the jump instructions. Otherwise,
logically connected units are packed together as tightly
as possible into the program blocks in order to maximize
the average number of object-program instructions
obeyed between transfers of program blocks from the
backing store.

The major consideration affecting object-program
efficiency is that program loops should not be divided
across blocks. Obviously this criterion cannot be
applied to loops comprising more instructions than will

fit into a single block. (Occasionally hand coding can
score over automatic coding since such a large loop may
be rewritten as two small loops, each of which can be
contained in a single block. However, such a complex
operation cannot be undertaken by an automatic
process.) On the other hand a process which auto-
matically starts a new program block at the head of each
loop cannot claim to produce an optimal result, since
in many cases the loop can be wholly contained in the
space remaining in the previous block.

The scheme to be described enables an optimal object
program to be produced, since the source program
contains special markers interspersed in the string of
pseudo-orders. These markers bracket the program
loops (and any other sections of program which are
required to be forced into the same object program
block) and direct the scheme to start a new block only if
the bracketed section overspills the current block.
Since they may be nested it is essential to have two types
of marker—a left-hand bracket and a right-hand
bracket. The source of the brackets is left entirely to
the design of the compiler or assembler using the
segmentation process. Certainly with assemblers they
will be direct translations of markers supplied by the
source programmer. In complex compilers they may be
inserted automatically after analysis of the loop structure
of the source program. In addition to the brackets two
other types of special marker are used. One is the
end-of-program marker terminating the string of pseudo-
orders. The other type is the label marker: this contains
a numerical identification of the original label name
within the marker. The label markers appear in the
pseudo-order string immediately preceding the labelled
pseudo-orders. Other pseudo-orders referring to the
labels contain the numerical identification in the address
bits.

It is interesting to note that forward jump instructions
have no effect on the selection of segmentation points.
For a forward jump to be significant it must be wholly
contained within a loop; and since the segmentation
process forces loops into a single block, wherever possible,
the forward jump is ignorable. In the case of a loop
spreading over more than one block it is immaterial
whether or not a segmentation point occurs within the
range of the forward jump—unless rearrangement of the
source program can occur. It was decided that re-

* I.C.T. Ltd., Research Department, 2 Gayton Road, Harrow, Middlesex.

C

20z UoJeN €1 U0 1s8nB Aq 678E L /S8 L/E/L/aI01E/UlWOD/W0d dNno"olwapese)/:sdjy WOy PaPEojUMOQ



Segmentation of programs

arrangement of program was beyond the scope of the
segmentation process. Although forward jumps do not
affect the selection of segmentation points, they compli-
cate the segmentation process. When a forward jump
is met it is not known if the object label will fall within
the same block. The number of object-program in-
structions required to effect the forward jump varies
according to the answer. For an out-of-block jump the
object program must transfer the new program block
from the backing store in addition to the jump.

A simple solution to the difficulty is to allow the
maximum in every case and fill in with null orders when
the label appears in-block. This solution is unsatis-
factory since it results in loose block packing and hence
not the optimal result. (Experience has shown that an
average saving of from 15 to 20 per cent results when
the aforementioned loose block packing technique is
replaced by segmentation technique which produces
tightly packed blocks. This does not mean that the
former technique wastes an average of 15 per cent of
the object-program blocks with null orders—since a form
of iterative saving occurs. By packing blocks tightly
the average number of labels per block increases. This
results in further savings due to an increase in the number
of within-block forward jumps. This enables tighter
block packing, which increases the average number of
labels per block; and so on to a limit.)

External appearance of the segmentation program

The segmentation program has been implemented on
the I.C.T. 1301 computer. Since it was expected to
form part of several compiler and assembly systems it
was designed as a “‘black box™ package. This package
has six entry points which can be used by the compiler
or assembler. The purpose of each entry point is as
follows.

(1) The package is primed with a constant which is to
appear in the same object-program block as the next
instruction and will be used by that instruction. The
package generates an address for the constant and puts
this out for use by the compiler or assembler in con-
structing the next pseudo-order. The package ensures
that duplications of the same constant, within a single
object-program block, are removed.

(2) The package is primed with the name of a sub-
routine and the size of the subroutine. This entry is
used simply to declare the existence of the subroutine to
the package. The name and size are merely noted and
no output results.

(3) The package is primed with a previously-declared
subroutine name. This subroutine is to be incorporated
in the same object program block as the next instruction,
and will be used by that instruction. The package
generates an address for the start of the subroutine and
puts this out for use in constructing the next pseudo-
order. References to the same subroutine by different
pseudo-orders in the same object-program block result
in a single copy of the subroutine appearing in that
block.

186

(4) The package is primed with a label name. The
package notes the name and puts out the numerical
identification of the label. If the same label name is
presented on separate entries the same numerical identi-
fication results. The output is used by the compiler or
assembler to construct the special label marker, or to
construct the address part of the next pseudo-order.

(5) The package is primed with a stop name. This is
noted, and a unique number is assigned to the stop
name. This number is put out for use in constructing
the next pseudo-order (a stop instruction). This facility
enables the different stops in the object program to be
distinguished, which may in turn instruct the computer
operator to take different actions.

(6) The package is primed with a pseudo-order or
special marker. This is incorporated into the object
program (after appropriate transformation) which is
either put out via a peripheral unit or stored ready for
obeying when the complete object program has been
formed.

The main objective of the design of the segmentation
package was to obtain the best possible interface between
the syntax analysis and generation operations of a variety
of compilers and assemblers, and the segmentation
process required to produce object programs for two-
level store computers. It is interesting to note that in
the design described above the task of forming and
utilizing the tables necessary to back up the pseudo-
order string has been removed from the compiler or
assembler.

Internal operation of the segmentation program

The action of the segmentation program for the first
five entry points is mainly self-evident. The key to the
efficiency of the segmentation process lies in the action
taken when the pseudo-orders are presented. Although
the process is one-pass, for the sake of clarity it will be
described as a two-pass operation, and then a brief
indication will be given of the manner in which this can
be adapted into a one-pass operation. Further the
process will be described as producing its output via a
peripheral unit, the simplification required to make it a
“load and go” process being obvious.

As each pseudo-order is presented to the package it
is simply stored in the next position of a buffer. This
buffer is of such a size that when full the pseudo-orders
it contains will always give rise to more than a single
object-program block. The loading of pseudo-orders
into the buffer continues until it is full, when the main
body of the segmentation program is entered. The first
task of the process is to determine the next segmentation
point. This is achieved by examining the pseudo-orders
sequentially and updating two counters: a pessimistic
counter and an optimistic counter. To describe the
role of the two counters let us picture a graph showing
their progress. This graph is a plot of the number of
pseudo-orders so far processed for the current block
against the space occupied by the corresponding object
program (including instructions, constants, subroutines,

202 YOJBIN €1 U0 }sonB Aq 658€ L 1/S81/E/2/1014e/ufod/Wwoo"dno-oiWapeoe//:SdRy WOy, papeojumod



Segmentation of programs

etc.). There is a limit to the space available in the object-
program block, and we shall represent this as a cut-off
line which we shall call the ‘“blue line”. The two
graphs each take the form of a step function with
different increments according to whether or not the
pseudo-order involves a constant, subroutine, etc., and
including zero increment when a special marker is
encountered. Initially the two graphs follow the same
path. When a forward jump is met they diverge, the
optimistic counter increasing on the assumption that the
label will appear in the same block, whilst the pessimistic
counter increases assuming that the label will be out-of-
block. When a label is met no increment is applied
to the optimistic counter, but the pessimistic counter is
decreased by an amount equal to the product of » and
s, where s is the space occupied by the extra instructions
needed to perform an out-of-block jump, and » is the
number of forward jumps to the label which have
appeared so far in the current block. The pessimistic
counter always crosses the blue line either before or at
the same point as the optimistic counter. Once the
optimistic counter crosses the blue line the updating
process is discontinued and the segmentation point is
determined. There is no point in continuing since the
optimistic counter can only increase. On the other hand
when the pessimistic counter crosses the blue line it
merely indicates that a possible segmentation point has
been reached. It may be that the pessimistic counter
will be brought back within range by the application
of a decrement when a label is met.

A segmentation point is determined when one of two
criteria is satisfied. Either a left-hand bracket is met
and the object program up to the corresponding right-
hand bracket overspills the current block, or the pessi-
mistic counter crosses the blue line and does not return
within range. Two scratch pads are kept during the
updating process. When a left-hand bracket is met
details of the current position are noted on one of these;
a similar note is made on the other when the pessimistic
counter crosses the blue line. The former pad is
scratched if the corresponding right-hand bracket is met;
likewise the latter if an obliging label is met. When the
updating procedure terminates, the earlier of the two
possible segmentation points is taken.

Once the segmentation point has been decided the
second pass transforms the pseudo-orders into machine

187

instructions and puts these out. It is known at this stage
which labels are in-block, and hence the precise number
of instructions required to effect each jump order.
However, it is not possible to construct the addresses of
forward jumps to out-of-block labels at this stage. This
and similar problems are overcome by putting out blank
addresses which are filled in at object-program load time
by “corrections” put out when the label is eventually
met.

The major problem in adapting the two-pass process
described above as a one-pass process is the fact that
the number of object-program instructions resulting
from a forward-jump pseudo-order is unknown when it
is required to put out the forward-jump instruction. To
remove the problem we introduce the concept of pseudo-
constants. Let us first consider the layout of a single
object-program block. This consists of machine in-
structions starting at the beginning of the block and
terminating at some point with an out-of-block jump to
the next block (which is inserted automatically by the
segmentation program). Also there are constants and
spaces into which the loading process slots subroutines
which start at the end of the block and are allocated
backwards. (Any spare space left in the block appears
between the end of the instructions and the beginning
of the constants/subroutines.) Thus the order of output
is instructions followed by constants and subroutines.
To resolve the problem of forward jumps a single jump
instruction is put out corresponding to the pseudo-order.
If the label turns out to be in-block this is all that is
required. If the label appears out-of-block then the
jump address is made that of a pseudo-constant which
organizes the transfer of the new program block from
the backing store and jumps into it. When the segmen-
tation point has been decided it is known which pseudo-
constants are required and which can be discarded.
Naturally forward jumps in the same object program
block to the same out-of-block label result in a single
pseudo-constant. Whenever a possible segmentation
point is reached the output of instructions is halted and
future pseudo-orders are stacked until it has been
decided whether or not it is the true segmentation point.
If not the stacked pseudo-orders are used to produce
further output for the current block; otherwise they
are used to produce the initial output for the next
block.

202 UOJBIN €1 U0 }sonB Aq 658€ L 1/S81/E/./1014e/ufod/Wwoo"dno-olWapeoe//:SdRy WOy, papeojumod



