An analogue computer simulation of a Cowper Stove

By J. M. Ridgion, A.J. Willmott and J. H. Thewlis*

The hot blast stove is a counterflow regenerator operating under conditions of variable mass
flow. In consequence the solution of the corresponding differential equations for dynamic equili-
brium makes extreme demands on computing facilities. An analogue circuit has been developed
which involves few simplifying assumptions. Results have been compared with a simplified
digital solution for a suitably restricted case.

The blast furnace must be supplied with hot air at
constant flow rate and constant temperature. By means
of regenerative heat exchangers, called Hot Blast Stoves
or Cowper Stoves, the blast for the furnace is preheated
by the hot waste products of burnt blast-furnace top gas.

The cycle of operation of the stove consists of a heating
period and a cooling period. In the heating period,
blast furnace gas of calorific value 90-100 B.Th.U./cu.ft.
is burnt, usually at constant rate, but with an excess air
ratio which is varied so as to limit the surface temperature
of brickwork at the entry end of the stove. The hot
products of combustion are passed down through a
matrix of ceramic material, called “chequerwork,” in
which the heat is then stored. At the end of this period
the gas is shut off.

In the cooling period, the heat is regenerated from the
chequerwork to the air for the blast furnace,
which is blown upwards through the heat-storing mass.
Constancy of blast temperature is achieved by varying the
proportion of the total air delivered to the furnace which
passes through the stove. To provide a continuous
supply of a blast, at least two stoves are required.
Typical operating times are one hour on blast (cooling
period), and, with the more common 3-stove installation,
two hours on gas (heating period). A typical modern
installation might be required to furnish 100,000 s.c.f.m.
of air at 1000°C.

The behaviour of such a system is not difficult to
formulate in the form of differential equations, but
obtaining the solution of the equations corresponding
to a repetitive cyclic state is a formidable problem unless
drastic simplifying assumptions are made. Until the
appearance of machines such as the Atlas digital com-
puter, simulation could only be effected at prohibitively
high cost or by extensive simplification. Analogue
computers appeared to offer more flexibility with some
loss of numerical accuracy, and they have been used by
the research departments of the Jones & Laughlin Steel
Corporation (Meyer, Simcic, Ceckler and Lander, 1960)
and the United States Steel Corporation (Schuerger and

Agarwal, 1961). The present work was based on the
extensive facilities incorporated in the analogue com-
puter of the International Research & Development
Company at Newcastle upon Tyne, and represents a
part of a combined analogue and digital computer
attack on the problem.

The mathematical model

The differential equations considered in this work as
representing the thermal behaviour of a Cowper Stove
are as follows:

1. Heat transfer within the chequer heat-storing mass
T 2T
0~ % o2 M
(longitudinal conductivity in y — direction ignored).

2. Heat transfer between the solid surface and the gas
flowing through the channels of the chequerwork

Y
ha (To — 1) = WSLy )

3. The boundary conditions relating the two equations
are:

T
h(Ty—1t) = A(S;),,:oand =d @
T
Further, 0= b_x)x —1d @

4. For heating period W = f (R); initially R = R,,
subsequently R = f(6) such that T, (y = 0) = constant.
In the cooling period W varies with time and, at any
instant, satisfies the relationship W = Wg(tz— t0)/(ts — to).

y = direction of gas flow (feet)

x = direction into chequer wall, perpendi-
cular to y (feet)

0 = time (hours)

Notation
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Analogue simulation of Cowper Stove

T = T (x, y, ) = solid temperature (°F)
t = t(y, 6) = gas temperature (°F)
Ty = T, (y, 0) = surface solid temperature
(’F)
o = chequer thermal diffusivity (ft2/hr)
h = surface heat transfer coefficient (B.t.u./
ft2/hr/°F)
A = heating surface area of chequerwork
(ft)
W = mass flow rate of the gas (Ib/hr)
S = specific heat of the gas (B.t.u./Ib/°F)
L = length of Cowper Stove (y — direc-
tion) (feet)
A = chequer thermal conductivity (B.t.u./
ft/hr/°F)
d = chequer wall thickness (x — direction)
(feet)
R = excess air ratio (ft3/ft*> gas)
Wy = total mass flow rate of air delivered
(Ib/hr)
tp = blast temperature for furnace (°F)
t; = air temperature at stove outlet (°F)

(at y =1)
t, = air temperature at stove entrance (°F)
(at y =0).

Difference representation of the differential equations

The hyperbolic and parabolic differential equations
involve derivatives with respect to 6, time and x, y,
distance. The integration facilities in an analogue
computer can only be used to integrate with respect to
one dimension, usually as in this case 6 time. The
other derivatives must therefore be expressed in difference
form. (See Fig. 1a.)
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Fig. 1(a)—Illustrating application of diffusivity equation

oT
2 =0
dx

However, it is first necessary to re-write equation (1)
in terms of computer time, 7 (seconds) instead of a real
time 6 (hours). If 7 = B0 where, in this problem,

B was set equal to 12, that is 12 seconds computer time
equivalent to 1 hour of real time, then equation (1)
becomes:

T « 2T
% B (1a)

This equation (la) is represented in difference form.
The solid temperature was calculated at the surface of
the solid (x =0, r =0), the middle of the chequer
wall (x = 1d, r = 3) and at two intermediate equally
spaced points (r = 1, r = 2). The distance between the
points was x = d/6. In general, at any point r, the
equation (la) becomes:

oT, o

_37 = W(Tr+l — 2T, + Tr——])' (5)
In the middle of the chequer wall, the boundary condition
(4) is incorporated, that is:

T 20
o> = B~ T ©®)

At the surface of the solid, the difference representation
must incorporate the boundary condition (3), and
becomes:

DTO 20(

2ha
- BAx)? (T, — Ty + BT(_Ax)(t —Ty. (D

The truncation error associated with all the approxi-
mations for the first and second derivatives is of the
order (Ax)2.

In the direction y, along the length L of the stove, the
solid and gas temperatures were calculated in the ana-
logue model at the two entrances to the chequerwork
(y=0,s=0)and (y =L, s =8), and at seven inter-
mediate levels equally spaced at a distance Ay = L/8.
(See Fig. 1b.)

The entrance gas temperature ¢, is known at all times
during the cycle.

Using the trapezoidal quadrature formula, the gas
temperature at a level s 4+ 1 can be calculated using the
equation:

. Ay (ot ot
’MH N Is + 7{ $)s+l + D—y)s} (8)

The truncation error associated with this finite-
difference representation is:

Ay\3 /33t
- (E) (a—ys) T

This means that, provided an analogue circuit can be
devised to compute the derivative (3¢/dy), at each level
s=20,1, 2, ..., 8, the gas temperature can also be
computed. Such a set of nine circuits was included in
the analogue-computer model each of which computed,
at the level s,

ay kA
b_y) = st To— 1
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Analogue simulation of Cowper Stove
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Fig. 1(b).—Schematic drawing of Cowper Stove showing levels
for which gas and solid temperatures were calculated

Heat storing
matrix
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Analogue representation of the unsteady state heat con-
duction in the walls of the chequerwork matrix

The purpose of this section of the circuit is to generate
values of T,, the surface temperature, from the heat
transfer rate A(¢+ — T,) which is provided from the section
of the circuit dealing with gas/solid heat transfer.

Preliminary attempts were made to solve equations
(5)—(7) using integrating amplifiers as indirect analogues.
Stability was difficult to achieve so recourse was made
to the use of a direct network analogue in the feedback
of an operational amplifier (Fig. 2).

The difference equations have been set out as equa-
tions (5), (6) and (7). In the direct network analogue,
use is made of the similarity in form between these
difference equations in heat flow in the solid, and the
equation for the voltage distribution in a capacitor-
resistor network in the feedback loop of an operational
amplifier. This is illustrated by the differential equation
representing a general part of the network (Fig. 3a).

A

T

Fig. 2.—Network analogue of unsteady state conduction

h(t-To)
Ro
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Vr-i Vr
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CT Cs |
(@) (b)
Fig. 3.—Network elements (a) and (b)

Consideration of Kirchhoff’s laws leads to the equation

AV, 1
3 ﬁ(V—l =2V, 4+ Vi)
Notation V, = potential at the rth capacitor in the net-
work (volts)
C = capacitance (microfarads)
R = resistance (megokms)
T = computer time (seconds).

The corresponding difference equation (5) is

T,

> ﬁ(%x)z(Tr-H — 2T, ).

The scaling factor relating voltage to temperature used
in this analogue was 25°F/volt. The network equa-
tion then becomes, on substitution of V' = T/25,

oT, 1
3 — R
It will be seen that the scaling factor 1/25 does not
appear in this equation. It follows that the network
equations can all be expressed in terms of temperature 7.

If the network is to simulate unsteady-state heat
conduction in the chequer mass, it is necessary that

CR = B (Ax)?/a.

In the network, it is convenient to choose the value of
C; and C, at each stage to be 1uF. Hence:

Rl = R2 = R3 = B (Ax)z/oc megohms.

In the middle of the chequer wall, the equation be-
comes:

Tr+l - 2Tr _|" Tr_l).

2
o BlAx)

The corresponding analogue representation is shown
in Fig. 3b with

(T, — Ty).

M _ 1
o C3R3( 2
It follows that C;R; = B(Ax)?/2«. However, the

resistance Rj is fixed for the previous difference equation
for r = 2, that is

R; = B (Ax)?/e megohms.

It immediately follows for r = 3, that C; = JuF.
At the surface boundary, where r = 0, the difference
equation is

- T3)-
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Analogue simulation of Cowper Stove

T, 2a 20
—b—Tq = -——ﬂ(Ax)z(Tl — To) + B)\(Ax)h(t - TO)

The corresponding equation for the analogue repre-
sentation (see Fig. 2) is

T, 1
¥ CoR,
Hence CyR; = B(Ax)?[2«, and, as at the boundary
in the middle of the chequer wall, Cy = $uF since
Ry = B (Ax)[e.
Similarly CoRo = PA(Ax)[2«. Since Cy = $uF, the
expression for the input resistor R, is:

R, = BA(Ax)/oc megohms.

1
(T, — To) + C_'o—R_oh(t — Ty).

Nine such circuits, corresponding to the levels s = 0,
1, ..., 8, were set up, and it was possible to introduce
different components in each to allow for variable
geometry and physical properties of bricks where these
were not constant throughout the stove setting. As the
approximate average brick temperatures were known for
each level, appropriate values for the thermal properties
could be used. Components R;, R, and R; with values
of the order of 300 KQ were made up of fixed resistors
in series with 100 kQ variable resistors. R,, about
1 MQ was a fixed resistor preceded by a variable
attenuator.

Analogue simulation of heat transfer between gas and
brick surface (Fig. 4)

These circuits at each level s =0, 1, ..., 8, had
inputs corresponding to the gas/solid temperature
differences (T, — t), and were required to evaluate the
rate of heat transfer h(t — T,) to feed the corresponding
diffusivity circuits of Fig. 2 described above, and also
the values

Ay

2 Yy

Common mass

flow servo
ot N/
43— O—<—X
S5A Ay \?V
Wi (Tw)

A\

h(t To)/ 10

Poin'f (a)

(Ccz)

N
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Fig. 4.—Analogue of heat transfer between gas and solid
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involved in the evaluation of the gas temperatures
to to tg.

The system involves multiplication of (T, — t) by the
sum of the convective and radiative heat transfer
coefficients /. and h, (see below). An individual servo
multiplier is used with twin input resistors to the asso-
ciated amplifier. The multiplier is followed by sign
reversal to give h(t — T,) for input to the diffusivity
circuit.

Since division by the mass flow W is performed at each
of the nine levels this is effected by a multiple-gang
servo multiplier with a factor W/(4W) where W is an
arbitrary maximum flow rate. The factor 4 is recovered
in a sign-reversing stage, and an attenuating potentio-
meter introduces the remaining constants to provide

d
A?yb_;)

The trapezoidal ladderwork
At each level s, of the Cowper Stove model, the

quantity
Ay rot
7 (),

was computed by the circuits just described. The nine
levels were interlinked by the “trapezoidal ladderwork”
of Fig. 5 which is an analogue representation of the
previously discussed trapezoidal quadrature formula.
It would have been possible to compute the gas tem-
perature at each level throughout the simulation by
direct application of this trapezoidal rule, namely:

A
e Q) @)

However, the evaluation of these temperatures was
not of particular interest, except at the exit to the stove.
Of more importance was the computation of the temper-
ature difference (T, — t) between the surface solid tem-
perature and the gas temperature, since the rate of heat
transfer at each level was directly proportional to this
difference.

For scaling reasons only % 7o, where f, was the entrance
gas temperature, was presented.

The summing amplifiers used at each level to evaluate
the temperature difference (T, — t) are labelled L,, that
is L0, L1, L2, ..., L8. In addition it was necessary to
evaluate the gas temperature explicitly at levels s =2,
s = 4 and s = 6 and at the exit where s = 8. The values
of t,, t4, te and tg were computed by adders labelled
L9, L10, L11 and L12, respectively. This temperature
difference (T, — t) was computed in three different ways
at different levels in the stove. At each level, however,
the surface solid temperature, computed by the analogue
representation of unsteady heat conduction at that level,
always comprised one of the input voltages to the adder
labelled L, (s =0, 1, ..., 8).
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Analogue simulation of Cowper Stove
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Fig. 5.—Trapezoidal ladderwork for progressive generation of
gas temperatures

At level s =0

The input voltages to adder LO corresponded to
— Tp0 and % 7, (input with an amplification of 2),
yielding the difference (7,0 — £).

At levels s =1, 3,5 and 7

Employing the trapezoidal rule, the gas temperature
t; was evaluated in the L, adder as

192

e )+ ) )

The adder inverted the sign of ¢ together with the sign
of the other input — T, yielding the difference (T, — ?).

Al levels s =2, 4, 6 and 8

As above, the gas temperature #;, was evaluated im-
plicitly in the adder L, using the trapezoidal rule,

e {4 ()

However, instead of computing #;,_, the trapezoidal
representation of this temperature, also namely

{(by s—1 Dy)s 2}

was used, and the expression for #z; became

=t (G, 26, + (o))

Including the surface solid temperature — T, there
were thus five inputs to the adder L; which computed
the difference (T, — ¢).

For levels s = 3, 5 and 7 it was necessary to evaluate
t, _ 1 explicitly employing adders L9, L10, and LI11.
The exit temperature ¢35 was also computed explicitly in
the adder L12. In order to perform this calculation
the voltages corresponding to (Ty — t) and to — T,
were added together in the summing amplifier, which
upon the incumbent sign reversal yielded explicitly the
required temperature f,.

tsfl = tsf2

Reversal

The heat transfer and diffusivity circuits shown in
Fig. 4 relate to defined positions in the regenerator

because the values T, are in the nature of a historical

time integral and, in addition, many of the potentio-
meter settings relate specifically to average temperature
levels in the stove.

In the ladder system, however, the value ¢, must refer
to the input to the chequerwork, the hot end of the system
during the heating period and the cold end during cool-
ing. Means must therefore be provided for inter-
changing the connections between the ladder and the
heat transfer computing circuits during the changeover
period of the system. Details of the relay system and
associated timing devices are given below.

Gas flow conditions

(a) Cooling period
During the blast period the inlet temperature iz, is

constant but the flow is partitioned between regenerator
and bypass to give a fixed mixed air temperature, ¢p.
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Analogue simulation of Cowper Stove

Flow through the stove W is related to total flow to the
blast furnace Wjp by the relation

W (tg — to) = Wpg (tp — t;) = constant.

In Fig. 6(a) the multiplying function W/(4 W) is generated
on a multigang servo multiplier by offering } (3 — to)

Mass flow servo ref.

Controller

A
~

@)

4
.

A

(b) HEATING CYCLE

Fig. 6.—Input conditions (a) cooling cycle
(b) heating cycle

S.A. = multiplier servoamplifier; F.G. = function generator

to the servo amplifier and (5 — #,) Wa/ W to the end
of the reference potentiometer arc. Simultaneously
/4 74 was evaluated on another multiplier and converted
to (W/W)0 -8 in a function generator for use in supplying
the convective heat transfer coefficient.

(b) Heating period

Gas flow, temperature and CO, content are all
determined by the air/gas ratio which, after an initial
period, is varied to prevent the hottest brickwork surface,
T, 4 exceeding an arbitrary limiting temperature Tp.

In Fig. 6(b) the ratio of excess air to fuel gas is pro-
vided by a 3-term controller analogue operated by the

193

difference (T, 4 — Tp) but held to an initial condition
state R, until T, 4 first reaches the value T'p.

Total gas flow W = V, (k 4+ R) where V, = volume
of fuel gas (constant)

k = volume of combustion products with theoretical
air per unit of fuel gas.

By referring the value of W to W and ;LW the desired
factors W/(4 W) and W/W and hence (W/ W)0 ‘8 are
obtained.

The inlet gas temperature is obtained from a heat
balance

(tr—tYkCy=(ty—1t") (kCi+ RC)

where t! = ambient temperature

tr = adiabatic flame temperature for stoichio-
metric combustion

k = volume of theoretical products per unit
volume fuel gas

C, = specific heat of same

t, = mixed gas inlet temperature

C, = specific heat of air.

This can be transformed to give

(to — 1Y) =(tr — 1)
1+R(C1k

and evaluated with a 1/(1 4+ x) function generator and
two potentiometers.

The CO, content of the mixture of theoretical com-
bustion products and excess air can be obtained rather
more simply:

CO C !
(€02) = (O (T 7)-
Reversal

Relays were provided to convert Fig. 6(a) to Fig. 6(b).
As reversal of stoves requires about 5 minutes (=1
second computer time) this otherwise dead period was
usefully _employed in allowing the 20-gang mass flow
servo (W/(4W)) to reach the appropriate position for
the next half-cycle.

Heat transfer coefficients

The convective heat transfer coefficient required was
of the form h, = hyW°8:%2, Simulation of the 02
term was not included but different constant-time means
were taken for the 9 circuits of Fig. 4. A common
source (W/ W)° ‘® from Fig. 6(a) or (b) was attenuated
by the factor A2 (W)*8 and presented to one of the
inputs of the h multiplier of Fig. 4.

The rate of heat transfer due to radiation is

o (izi') (egt* — BgT*)

and may be evaluated with the aid of the Hottel charts.
A close approximation is given by

(@a+5(COyY)) (—T)
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Analogue simulation of Cowper Stove

over a useful temperature range within the overall
temperature limits of the present simulation. On the
basis of the (CO,) values given by Fig. 6(b) three func-
tions of the form a + b (CO,) appropriate to three
different mean temperature levels were generated.
During the heating period (only) the (second) inputs of
the A multipliers of Fig. 4 were fed with the function
appropriate to the mean temperature level in the slice.

Timing and relay sequencing

A uniselector driving from a 1 second clock was
employed to define the periods

A on blast (cooling)

Y changeover (one second = 5 minutes real time)
G on gas (heating)

X changeover (one second).

During periods X and Y all inputs to the diffusivity
circuits were interrupted (at (a), Fig. 4). At the end of
periods 4 and G the ladder amplifiers LO to L8 were
protected from overflow due to transients by inserting
supplementary feed-back resistors of 100 kQ. After
a time delay of 0.3 seconds, derived from a slugged
relay, the control circuits Figs. 6(a) and (b) and the
connections between ladder and heat transfer circuits
were changed over. The suppressor resistors of L0 to
L8 were then disconnected in that order by a fast relay
chain. At the end of the X and Y periods the diffusivity
circuit inputs were restored.

Example calculation

It is not the purpose of this paper to discuss the
thermal calculations performed using this analogue
simulation. These will be set out in a separate paper.
However, an example calculation is now presented since
it demonstrates that this analogue method of regenerator
calculation is comparable with other methods.

Simplification of the differential equations (1) and (2)
together with the boundary conditions (3) and (4) is
possible by the introduction of an overall heat transfer
coefficient 4, from the mean solid temperature T,
where

1 d
T =15 jo T(x)dx,

B (Tpw—1t) =Ty —1)and 1/h = 1/h +d $/6 \.

It can be shown that in this case, the equations become

3, kA
>0 = m(f —Tn) %)
d  h4
o wsg, Tm =1 (6
Notation h — overall heat transfer coefficient (B.t.u./
ft2/hr/°F)
¢ — correction factor for regenerator rever-
sals

194

M — mass of chequerwork in regenerator
(1b)

C — specific heat of chequerwork (B.t.u./lb
°F).

A numerical method for solving these equations (5)
and (6) has been set out in a paper by Willmott (1964)
and programmed for the Ferranti Pegasus computer.

The method assumes

(i) that the flow rate in each period is constant with
time
(ii) that the inlet gas temperatures in each period are
constant with time
(iii) that the heat transfer coefficients in each period
do not vary over each period and over the height
of the stove.

An initial calculation was performed by the analogue
simulation with the control system adjusted and poten-
tiometers set so that these assumptions were satisfied.
A comparison was then made between the surface solid
temperatures and gas temperatures computed by the
analogue simulation and the digital computer program.

Data employed
Thickness of chequer

walls (d)  1.62 (inches)
Chequer specific heat  (¢) 0.32 (B.t.u./Ib/°F)
Chequer thermal dif-

fusivity (x)  0.02 (ft?/hr)

Mass of chequers (M) 540 (tons)

Surface heat transfer

coefficient in both

periods (h)  6.507 (B.t.u./ft?/hr/°F)
Heating surface area  (4) 127,303 (ft2)

Flow rate of gas in

each period (W) 170,000 s.c.f.m.
Density of gas ()  0.08071 (Ib/ft?)
Specific heat of gas (S) 0.27 (B.t.u./Ib/°F)
Chequer thermal con-

ductivity (d)  0.76 (B.t.u./ft/hr/°F)
Hot inlet gas tem-

perature (tn,)) 2100 (°F)

Cold inlet gas tem-

perature (t.,;) 200 (°F)

Heating Period = Cooling Period = 1.5 (hours).

Both the analogue and digital computer programs
employed the trapezoidal quadrature formula to inte-
grate up the height of the stove. The temperatures were
computed by each method at the entrance and exit to the
stove chequerwork, and at seven other levels equally
spaced in the height of the stove.

In the analogue method, surface solid temperatures
were computed, whereas the digital computer program
evaluated mean solid temperature. However, the surface
solid temperature can be calculated from the mean solid
temperature and gas temperature, using the relation

Ty =t -+ h(T, — 1)h.

20z Iudy 61 U0 }sonB Aq £98€ 1 1/881/€/./aI0NE/UlWOD/W0d dNo"olWwapese)/:sdRy WOI) POPEOJUMOQ



Analogue simulation of Cowper Stove

For this comparison, it is convenient to define the
reduced length A and reduced period II, each the same
for both periods of the cycle in this case.

hA

A= 7= 7.601
hAP

II= 3 = 2676,

In Fig. 7 the surface solid temperature at levels 0, 2,
4, 6 and 8, as calculated by both the analogue and digital
computer simulations, and denoted by Sy, S,, S¢ and Sj,
are represented as functions of time. In Fig. 8 the air
temperatures in the cooling period and the waste gas
temperatures in the heating period at levels 2, 4, and 6
are represented as functions of time. The air tempera-
tures are denoted by A4,, A4 and 44 and the waste gas
temperatures by G,, G4 and Gg.

Truncation errors

The truncation errors associated with the trapezoidal
ladderwork representation of equation (2) have been
investigated previously in a paper by Willmott (1964).
They are a function of the departure from linearity of the
variations of temperature with time, which in turn are
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Fig. 7.—Surface solid temperatures calculated by the analogue
( — ) and by digital simulation (— )
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dependent upon the values of ITand A. (Hausen (1950).)
For the conditions studied with the analogue it was shown
that the number of slices employed was adequate.

Since the variation of solid temperature was linear
with time except near the gas entrances, the temperature
profile within the chequers is almost parabolic, so that
the difference replacement of equation (1) was adequate
for the number of steps employed.

Operation

When the analogue machine was switched on all values
of solid temperature T, were zero, and with repeated
cycling the system approached a state of dynamic
equilibrium. In order to judge when successive cycles
were similar the outlet gas temperatures 7g were integrated
over the appropriate half cycles and monitored. In
general this required 10 to 15 complete cycles, typically
a total run of 10 minutes.

Single point recorders were used to show all surface
solid temperatures T, exit gas temperature /3 and various
parameters such as W, R and (Ty, 4 — Tp).

Although static checks on the analogue showed that
it was possible, by exercising great care ia setting up, to
achieve 0.1%, accuracy, the overall error of the system
in dynamic equilibrium appeared to te about 0.59%.
This may be ascribed in part to the complexity of the
circuit and in part to errors associated with the recording
system.
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Analogue simulation of Cowper Stove
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Book Review

Automatic Control & Computer Engineering—Volume 2.
Edited by V. V. SoLopovnikov, 1963; 331 pages.
(Oxford: Pergamon Press Ltd., 100s.)

The Computer Engineering of the title is presumably to be
found in Volume 1, which your reviewer has not read, since
there is no vestige of it in the present volume. The book is a
collection of papers on automatic control presented at a
conference of the Russian instrument-making industry,
published as a book in Russia in 1959, and translated into
English by the Pergamon Press.

The papers form a pot pourri of control theory, each highly
theoretical and each highly specialized in its own field. They
constitute an important contribution to the classical literature
of control, and their publication in English is of value both for
its general interest as an indication of developments in the
U.S.S.R., and for the individual interest of particular papers
to specialist control engineers. It is not for general reading,
nor of general interest to computer specialists.

Two out of the nine papers, however, present the theory of
pulsed (and sampled) systems, and are in consequence of great
interest to those, theoreticians particularly, specializing in the
application of digital computers to the control of processes.
They are clearly based on considerations of radar systems, but
are equally applicable to the control, by sampling, of any
continuous system in which the value of the controlled variable
between sampling periods is of as much interest as the sampled
values.

The first of these, by V. P. Perov, concerns the determina-
tion of control parameters for system optimization, in a
least-squares sense. Using the methods of the z-transform and
the variational calculus, he first obtains general conditions for
minimization of error at each sampling point, using variable
parameters; these conditions, however, even under strongly
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simplifying assumptions, are practically unrealizable. He
then finds conditions for minimization, with fixed parameters,
of average error over a given time interval, and gives examples
in simple cases.

The second paper, by F. M. Kilin, goes into methods of
analysis of transient and steady-state processes in pulsed
systems, in which the pulses are not necessarily rectangular,
and of response to random signals. Each of these papers
comprises a highly detailed, extensive and painstaking presen-
tation of pulsed system theory, which almost makes a textbook
in itself.

There are two papers on vibrational smoothing of non-linear
characteristics, by self-imposed and by forced oscillations, two
on special non-linear systems, one on solution of a particular
type of non-linear differential equation, and one on optimum
bang-bang control subject to power limitation. The diffi-
culties caused by different national conventions in terminology
are well illustrated by the last paper, which is entitled
“Some questions relating to the logical design of circuits and
the selection of characteristics for high-speed servo-mech-
anisms.”

Finally, there is a most intriguing paper on the theory of
escapement regulations, the 61 pages of which must constitute
the most thorough theoretical investigation of the dynamics
of clock mechanisms yet made, and which includes an
excellent example of the use of phase-plane methods in
complicated cases.

Throughout, translation is of excellent quality. Misprints
exist, but not in such number as to be intolerable. The
photo-reproduction of type-face is good in the wording, but
causes eye-strain in some of the very complicated mathematical
notation, involving subscripts and superscripts of tiny size
and sometimes faint and ragged reproduction.

R. H. TizArp.
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