Classification of a set of elements

By M. J. Rose*

The paper describes the use of a computer in some statistical experiments on weakly connected

graphs.

Introduction

In classification problems we are often concerned with
trying to classify a set of elements with known charac-
teristics into subsets, such that any two members of the
same subset in some sense resemble each other more
than members of different subsets. For each element
we know which of a given set of properties it has, but
division into subsets according to possession or other-
wise of particular properties often does not lead to clear-
cut non-overlapping groupings. In such cases we can
consider every pair of elements, and decide by looking
at their characteristics whether or not the members of
any pair “resemble’ each other (Needham, 1961). The
results can be arrayed as a square symmetric matrix
whose (i, j)th entry is 1 if elements i and j “‘resemble”
each other, and 0 otherwise. For convenience we take
the diagonal entries as zero. The matrix may be con-
sidered as the Adjacency matrix of the corresponding
graph of the elements, where a point of the graph
represents an element and a line indicates that its end-
points ‘“‘resemble” each other (Berge, 1962; Harary et
al., 1964-65). In the graph, all lines present have equal
importance, are undirected, and loops and multiple lines
are not allowed.

The sampling and statistical method for computers
outlined below is intended to determine those points
and lines which are most likely to be cutpoints and
cutsets of the graph. When such points and lines have
been found, we remove them from the graph and test
by standard procedure whether or not the graph has
become disconnected; or equivalently, whether or not
the Adjacency matrix, with certain entries removed, has
become reducible. One such procedure is given by
Needham (1961). If the graph has become disconnected
we have succeeded in classifying the elements according
to their membership of one or other of the components;
if it has not, we repeat the procedure removing at each
stage further points and lines until the graph does
become disconnected. In connection with the present
work, one example used was an adjacency matrix of
size 342 X 342 with non-zero entries about 1 in 10 dense,
so that although the corresponding graph could in
principle be drawn it would be a far from easy task to
detect clumps, non-trivial minimum cutsets, cutpoints
and so forth.
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The work forms part of a statistical approach to some classification problems.

Method of finding points and lines for removal, using a
computer

We take a random pair of points, say /.and J, deter-
mine the shortest path between them on the graph, and
store the path in the computer in the form (7, I), (I, K),
(K,L),...(Z,)),(J,J)ywhere K,L, . ..Z are the inter-
mediate points on the path. After a statistically suf-
ficient number of such paths have been found and
stored, a count is made of how often each line, e.g. (I, K),
and each point, e.g. (I, I), has appeared in the paths.
From these counts, we can determine four quantities,
viz. the number of different points used, the total
frequency of all points, the number of different lines
used, and the total frequency of all such lines, from
which estimates can be obtained for the mean and
variance of the count of a typical line, under certain
assumptions stated below. Using these estimates a
significance threshold can be found, and lines with
counts above this are isolated. The expectation is that
these lines will be bridges between clumps, or members
of minimum cutsets. A test is also carried out to detect
significant occurrences of points rather than lines in a
similar way. After the significance tests have been done,
the cumulative counts are stored and the cycle of path-
finding, storing, adding to the cumulative counts,
recalculating significance thresholds, and testing is
repeated until the significant lines and points become
apparent.

Finding the shortest paths

Two numbers 7 and J are obtained from a random-
number generator and are stored as (Z, I), (J,J) at the
head of two lists held in the computer. The matrix
entries in row 7 are scanned, and lines of the form (K, I)
are added to the first list, each K being compared with
J to see if there is a direct link (Z,J). When all the lines
from I have been entered up, the block is terminated
and all lines of the form (Z, J) are added to the second
list, each Z being compared with entries like K on the
first list to see whether there is a path of length two
from 7 to J. When all lines incident to J have been
entered up, the block is terminated and the next block
on the first list is compiled consisting of entries such as
(L, K) which bring in new points such as L which are
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irreducibly two steps away from /. Each new point L
is compared with points like Z, which are one step
away from J, and which, of course, are to be found in
the last block only of the second list, to see whether a
path of length three exists from 7 to J. The procedure
is repeated, new points on one list being compared as
they are found with points in the last block only on
the other list, until either a common point is found, in
which case the shortest path can be found and stored by
tracing back through the two lists, or one list will not
have any entries added to it in the construction of a
block, in which case no path exists between the two
points and hence we may ‘deduce that the graph is not
connected. In this case, and in the case when the same
number is generated twice by the random-number
generator, i.e. when I = J, nothing is stored.

If there are more than one equally short paths between
two points, the method will only find one, which may
be biassed in favour of paths through low-numbered
points, if in scanning the matrix entries in a particular
row when constructing the above lists, lines to low-
numbered points are met first. This trouble, however,
may be overcome either by repeating the whole pro-
gram with significant points relabelled with the highest
numbers, or by randomizing the order in which entries
in each row of the matrix are scanned.

After a certain number of paths have been found and
stored, we move on to the counting and testing procedure.

Counting procedure

Two lists are here constructed, the first of the lines
and the points encountered in the path-finding, e.g.
(K,L), (I,I), and the second of the corresponding
counts. Whenever an entry is read from the store of
shortest paths, if it has occurred previously in the first
list, its count in the second list is increased by one,
while if it has not previously occurred, it is added to the
first list and its count set to one. When the testing
procedure has been finished, these two lists are stored
away while the next group of shortest paths are found,
and brought back when the counting routine is re-
entered, so that cumulative lists are obtained.

Testing procedure

We need a rational basis for the choice of significance
thresholds. Too much sophistication might be out of
place here since what we are primarily concerned with
is constructing a workable program, which locates
significant points and lines only as a first step towards
testing for the reducibility of the Adjacency matrix.
Furthermore, although the graph may have some
suspected structural form, our knowledge of it will often
be too slight to be of value, and so we can usefully
proceed as follows. We first derive the mean and
variance of the number of occurrences of a typical line
in, say, r shortest paths, given that there are m points
and k lines distributed randomly over the Ym(m — 1)
possible positions, but not allowing loops or multiple
lines (see Erd6s and Rényi, 1960).
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Let p; be the probability of choosing two points with
a shortest path between them of length i. We can
conveniently take i = 0 to cover the cases when no path
exists and when we choose the same point twice, since
in both instances we stored nothing at the path-finding
stage. Then the probability of a typical line occurring
in this shortest path is i/k, so the expected number of
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appearances in r shortest paths is 3} Tp—', i.e. ru/k where
@ = X ip;, the mean path length. !
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take as our threshold value for significance
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where the «, depends on the significance level required.
In the present work, «, was taken as 2%, but as explained
later, it should increase with k.

The counting procedure incidentally provides us with
four quantities: the number of different points such as
(1, I), a; the total number of occurrences of all such
points, A; the number of different lines which occur at
least once, b; and the total number of occurrences of
such lines, B. m is estimated by a, k by b, r by 14, and
n by B/3A = 2B/A.

Using these estimates, provided by the counting
procedure itself, we can evaluate the threshold, then
work down the list of counts and register as significant
any line whose count is above it.

A test on the counts of points can be derived as
follows; we assign the counts of points such as (/, I) to
point I but we assign the count of a line such as (K, L)
to both point K and point L. We thus count 2 for each
endpoint and 2 for each intermediate point.

Count of a typical point for r paths = 2 X number of
times

it is an endpoint of a path + 2 X number of times

it occurs as an intermediate point of a path = number
of times it

is an endpoint of a path 4+ number of times that group
of lines incident to it appear.

E (Count of a typical point for r paths)

__ 2 X number of paths
" number of points
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(number of lines ) (mean frequency of )
incident to point/ " \a typical line

%
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The variance of the line counts was approximately the
same as the mean (if u < k), so if we can assume the
same is true for the point counts we can take the
threshold for point significance as

2 2 12
R R A EA ]

where 8, depends on the significance level required, and
on k. B, was taken as 2} in the present work, but as
we shall see, a case can be made for setting 8, = a;1/2.
We estimate r, m and pu by 14, a, and 2B/A as above.

When these tests have been done, we go back to the
path-finding routine and repeat the whole sequence of
operations.

Further remarks on the distribution of line counts

We here give an alternative approach to the statistical
problem, which makes rather different assumptions but
leads to similar results.

The graph is known to have m points and k lines,
and we consider r shortest paths between randomly
chosen pairs of points. Each line has a very small
chance of occurring in any one path, so that approxi-
mately we can take each line count to be a Poisson
variable of expectation v, which is proportional to r.
These variables will be only nearly independent, but we
shall treat them as if they were. Thus we have k
independent Poisson variables X, . . ., X. The intuitive
principle we are working on is that these are nearly a
random sample from the Poisson distribution of para-
meter v, contaminated by a number of high values from
“bridging” lines. We must estimate v by X X;/k and

J
then consider each X; in relation to this, or equivalently,
we consider an independent set of Poisson variables

. . . X;
conditional upon their sum; if we put y; = E)} , then
4 j

. . . . . I
ignoring the contamination mentioned above, the y,’s
will be the result of assigning S = X X; objects ran-

J
domly and with equal probability 1/k to each of k cells.
Some remarks about the distribution of maxy; are
made by Koselka (1956) and lead to a significance

threshold of
S S I\ V?
%t “k[z(l —/;)]

which, since S = B = ru, agrees satisfactorily with the
formula given previously when k > u, k> 1.

o, is a one-sided (p/k)-significance level for the
normal distribution, where p is, say, 0-05. We have a
factor 1/k appearing here, because if k is very large, some
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large line counts are to be expected anyway, so that
if Z, is a standardized line count, the expression
pr(max Z; > o4) = p gives a more appropriate deviate
o. If F denotes the normal distribution function, we
have F¥(o,,) = 1 — p, i.e. F(a) = (1 — p)'/k =1 — p/k,
so that «, is a one-sided (p/k)-significance level.

The fixing of «, could be carried out automatically if
a program were available for inverting the normal dis-
tribution integral, but otherwise a value can be decided
on beforehand, using only a crude estimate of k.

The treatment of point counts is similar to the above,
except that as each endpoint and intermediate point is
given a count of 2, the factor B, in the formula for the
threshold corresponds to o«;4/2, since the variance of
twice a Poisson variable is twice its mean.

An interesting possibility in the point count test
would be to assign the count of a line such as (K, L)
both to point K and to point L, as before, but to
subtract the count of a point such as (/, /) from the
score of point /. This emphasizes occurrences of a
point as an intermediate point of a path by scoring 2
for each, at the expense of occurrences as an endpoint,
which are not scored. The significance threshold in this

C2r 2r 12
case is ’;(p. — 1)+ B« [;(/.L — 1)} .

Results

On an example of a graph of 21 points and some 36
lines deliberately drawn as two distinct clumps joined
only by four lines forming two bridges, the procedure
described above successfully isolated the four suspected
lines; while on a larger example of a graph of 342 points
with lines 1 in 10 dense, some 10 points and 80 lines
were shown up as significant after about 1000 paths
had been found, though, of course, many more paths
ought to be found so that the graph is thoroughly
sampled before we can accept the results with any
degree of certainty.

There is also a technical reason why r, the number of
paths found, must not be too small. We have estimated
k by B; this will lead to an appreciable underestimate
unless every line is likely to occur at least once. The
expected number of occurrences for a typical line is
ru/k and thus r should exceed, say, 5k/u. 1If it does not,
then it might be necessary to determine k by a complete
scanning of the matrix.
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Book Review

The Application of Computing Technigues to Automatic Control
Systems in Metallurgical Plant, by A. B. CHELYUSTKIN,
1964; 225 pages. (Oxford: Pergamon Press Ltd., 70s.)

Mathematicians and engineers who have been following the
magnificent advances in control theory from the Russian
school of Pontyagin will be sadly disappointed if they expect
to find any applications of this theory. The equipment and
techniques described in this book remind one of the first
stumbling efforts that have already been made in this country,
and one is left with the impression that the full potentiality of
computers in industrial control is as far from realization in
the Soviet Union as it is here.

The book is divided into two parts. The first and shorter
part skims over the subject matter of analogue computers,
transducers, digital computers, binary arithmetic, storage
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devices, and analogue-to-digital conversion equipment, in
56 pages. The remaining 150-odd pages consider some
individual applications to a sintering plant, a blast furnace,
the combustion of open-hearth furnaces, powering electric arc
furnaces, the screwdown and speed in a reversing mill, gauge
and tension control in tandem mills. All of these applications
seem to be very straightforward and offer no new startling
ideas. It is very difficult to judge whether these are merely
proposals or descriptions of actual installations. The last
few pages make a cursory survey of the possibility of on-line
control of a total works by digital computer.

It must, in fairness, be added that the book was originally
written in 1960, and it is to be hoped that in the intervening
four years a great deal of progress has been made.

K. D. TOCHER
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