A combined graphical and iterative approach to the problem
of finding zeros of functions in the complex plane

By F. M. Larkin*

The paper describes how an automatic graph plotter, used as a digital computer output device,
is capable of providing useful regional and global information about functions in the complex plane.
This information, in the form of the approximate locations and types of zeros, singularities and
branch cuts, enables one to choose starting points for zero finding iterations with a high degree

of confidence in their convergence.

A number of contour graphs are presented which illustrate

general features of complex functions near typical zeros, poles and essential singularities.

1. Introduction

The numerical evaluation of those values of z which
satisfy

Nz) =0, (1.1)

where f(z) is a suitably single-valued, continuous and
differentiable function of the complex variable z, is one
of the classic problems of numerical analysis, and many
methods exist for systematically improving estimates of
one or more such values. Some of these methods, such
as those due to Graeffe or Bairstow, are designed
specifically to deal with polynomial functions, whereas
others, such as Newton’s method and Muller’s method,
are in principle applicable to the general case.

Leaving aside special methods, which can be con-
structed for special functions (such as polynomials),
and which do not require an initial estimate of the
intended root, the common difficulty with iteration pro-
cedures is that of ensuring convergence. Generally
speaking the best that can be said of any practical
procedure is that it may be ‘“guaranteed to converge to
the required root provided the initial estimate is
accurate enough,” and the deliberate vagueness is by
no means intended as disparagement.

The object of this paper is to show how an automatic
graph plotter may be used to obtain an approximate
general picture of the properties of the function under
consideration, and hence provide starting values for
iterations from which convergence to the required zero
may be unconditionally guaranteed. The technique
described is only suitable for implementation on an
automatic computer, since hand computation would be
unbearably tedious, and it does necessitate some degree
of human intervention. However, this apparent
liability turns out in many practical cases to be a most
rewarding imposition simply because the intervener, or
any other interested party, can find at a glance the
approximate location and type of the function’s zeros,
singularities and branch cuts in the complex plane.
This information may not only make it possible to
avoid wasting computer time on divergent iterations,
but may also provide the heuristic basis upon which to
build a fruitful analytic approximation.

2. The origin of convergence troubles

Iteration procedures commonly used for finding zeros
of a general function f{(z) may be regarded as operating
by fitting to f(z) a function w(z), over a local region of
the z plane, and then taking an easily computed root of
w(z) as the current estimate of the required root of f(z).

For example, if z, is an estimate of a root, Newton’s
method gives the new estimate z, as

z _f(Zo)
0 VYRS

S(20)
which is actually the result of using f and its first
derivative to fit the linear function

w(z) = flzo) + (z — 2o).f"(z0) 22

to f(z) at the point z;, and then taking the zero of w(z)
as the next estimate of the desired zero of f{z). Muller’s
technique avoids the necessity for computing a derivative
of f, and fits a quadratic in z to function values of f at
three distinct points in the z plane; one of the zeros of
this quadratic is then taken as the next estimate of the
zero of f{z). Another method, which also avoids the
difficulty of choosing between two zeros of a quadratic
whilst still retaining convergence characteristics similar
to Muller’s method, is to fit the bilinear form

@2.1)

1=

z—a
w(z)_I;z—i—c

(2.3)

to function values of f at three distinct points in the z
plane, taking a as the next estimate of the required root
of f(z). This process involves the elimination of b and ¢
from three simultaneous linear equations, but has the
virtues of only requiring function values and of being
unambiguous.

One can see roughly that methods of this general type
will be useful only if the required zero of f(z) happens to
lie within the region of the complex plane where the
fitted function w(z) is a fair approximation to f(z), i.e.
if the initial estimate of the zero is good enough. The
principal source of difficulty with this kind of iteration
is that in general it can utilize only /ocal information
about f{(z) whereas some global, or at least regional,
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Zeros of functions

information is required in order to decide upon a
suitable starting point.

3. Convergence regions
Consider the conformal transformation

w = F(z). 3.1)

Points in the complex plane which remain invariant
under this transformation obviously satisfy

z = F(2). (3.2)

If zy is a root of equation (3.2) and |F’(zy)] < 1 then,
not only will z, be invariant, but a region containing z,
will be contracted around z, by the transformation. To
see this we simply set z = z, + a, w = z, + b, where |d|
is small, then

zg + b = F(zo) + a.F'(z),

so that
b
Bl ey,

(3.3)
al

Obviously if |F’(zg)] > 1 a region containing z, will be
expanded around z, The case where |F'(zy)| =1 in
general leaves z, as a point common to an even number
of regions, half of which are contracted towards z,
and the rest expanded away from z,. The number of
these regions is determined by the order of the first
non-zero derivative of F(z) at the point z,. The case of
equality is unimportant for the purpose of the present
discussion.

If |F'(zo)] <1 we define the “convergence region”
for the point z, as the aggregate of points in the complex
plane which can be transported arbitrarily close to z,
by repeated application of the conformal transformation
(3.1). Clearly a convergence region will not exist if
[F'(zo)] > 1.

If repeated application of transformation (3.1) is to
iterate, starting from some given point, to a zero of a
function f{(z), F(z) must depend upon the form of f (z).
In particular, the required zero z, of f(z) must also
satisfy equation (3.2). Given a rule (for example,
Newton’s method) for constructing F(z) from f(z) we
can envisage the function f(z) as demarking a number of
convergence regions in the complex plane, and, if the
conformal transformation (3.1) then forms a useful
iteration procedure, at least one convergence region will
be associated with a zero of f(z).

Clearly it would be of interest to establish the con-
vergence regions of a function under a given iteration
before embarking upon the somewhat uncertain pro-
cedure of the iteration itself. In general this is difficult,
although it is simple enough to isolate graphically every
zero of f(z) within as small a region of the z plane as
desired. However, it is possible to establish the con-
vergence regions for any function under a steepest-
descent type of iteration, equivalent to the limiting case
of Newton’s method with a very small step length, and
this is described in Section 6.
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4. The scope of graphical display

The following simple technique may be used to obtain
useful information about f(z) in any prescribed, finite
region of the complex plane.

Let f(z) = u(x, y) + iv(x, )
z=x-+1iy

@.1)

where 4.2)

and regard the single-valued functions u(x, y) and v(x, y)
as defining surfaces in a three-dimensional space. The
zero-height contours of the functions # and v, drawn
in the (x, y) plane, must certainly intersect at the zeros
of f(z), and an n-fold zero will be crossed n times in each
surface. Moreover, all contours of u and v, of all heights,
pass through all the poles, although, of course, # and v
are not defined actually at the poles. To see this,
suppose z; is a pole of order », then the dominant term
of the Laurent series of f(z), expanded about zy, is

—f—, a = constant. 4.3)
(z —zo)"
Let zZ—Zy= Rei®
a = Ae'®, where A is not zero,
so that (4.3) becomes
.Ae"(“""") _ Acos (¢ — nb) n Ai Sin (¢ — n). @.4)

Rn Rn Rn
Now consider the contour u(x, y) = U. Choose any R,

greater than zero, such that 1% > U and we see that there
must be exactly 2n values of 6 for which

Acos (¢ —nb)
R

Thus the contour height U in the u(x,y) surface
intersects a circle, with arbitrarily small radius, centred
on the pole, exactly 2n times. In fact these intersection
points are spaced equidistantly around the circumference
of the circle, and the effect is that the contour appears

U. “4.5)

to pass through the pole » times at angular spacings of ;:

A similar argument applies to the imaginary part of
v(x, y). _

If u(x, y) and v(x, y) are computed at the nodal points
of a mesh spanning the finite region of interest this
information may then be processed in order to compute
the curves u(x,y) =0, v(x, y) =0 in a form suitable
for presentation to an automatic graph plotter. Also,
if a few extra contours of positive and negative heights
are added, the resulting picture gives a clear indication
of the approximate positions and types of zeros, singu-
larities and branch cuts in the region of the complex
plane considered.

Fig. 1 illustrates contours in the » and v surfaces for
the function

(z—1)(z—1i)

AN 4.6
e “4.6)

fz) =
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Zeros of functions

The location of the zeros and poles is clear at a glance,
and the order of either is determined by counting the
number of times a zero-height contour passes through
the root or pole.

If f(z) is a rational function, having only a finite
number of zeros and poles, these can all be located by
plotting two contour graphs as follows.

(i) Plot contours of the real and imaginary parts of
f(z) inside the unit circle in the z plane. This
finds all zeros and poles inside the unit circle.

(ii) Make the conformal transformation w = 1/z and
plot contours of the real and imaginary parts of
f(1/w) inside the unit circle in the w plane. The
values of w at the zeros and poles which now
appear in the w plane can then be inverted to find
the positions of the zeros and poles of f{z) which
lie outside the unit circle in the z plane.

However, if f(z) is a transcendental function, having
an infinite number of poles or zeros and one or more
essential singularities, at least one of the above two
pictures will be very confused, due to the fact that the
discrete mesh will be incapable of resolving the fine
structure. For such functions one can obtain rather
crude general information by the above method, and
then proceed by examining selected regions of the z
or w planes in more detail.

5. The electric field analogy

For the purposes of subsequent discussion it is con-
venient here to review one of the many physical inter-

v(x,y)=0
\

Ist. ORDER POLE 1st ORDER ROOTS

u(x,y)=0

-

\ﬁ\z nd ORDER POLE
¥
\

Fig. 1.—Contours of the real and imaginary parts of

@ =1z )
f& = e 7

pretations assignable to functions of a complex variable.

If f2) = u(x, y) + iv(x, y)
is a function of the complex variable z, then
log [(2)] = &(x, y) + ih(x, y), (5.1
where g(x, ») = log | f(z)| (5.2)
and h(x, y) = arg[f(2)] (5.3)

is also a function of z, and g(x, ) and A(x, y) both satisfy
Laplace’s equation

Vg — 0 = Vh (5.4)

except at the singularities of log[f]. This allows us to
use f(z) to construct a two-dimensional electric field in
the following way.

At the position of each pole of f(z) place an infinite
positive line charge of magnitude equal to the order of
the pole, and at the position of each zero place an
infinite negative line charge of magnitude equal to the
order of the zero. The equipotential lines of this
electrostatic field are given by

log|f(z)| = constant (5.5)

and the electric field lines are given by the orthogonal
curves

arg[ f(z)] = constant. (5.6)

Thus a picture of the electric field associated with the
function f(z) is obtained simply by plotting contours in
g(x,y) and h(x, y), the real and imaginary parts of
log [ f(z)], in exactly the same way as was described for
u(x, y) and v(x, p).

The electric field vector is (— 2

ox
appealing to the Cauchy—Riemann relations we see that
the null points in the field occur where

R —b—g), and on
oy

d
-n =0, 5.7
Zllog (1] (5.7
i.e. at those points, other than zeros of f{(z), where
af
—_— = 0
dz

Fig. 2 illustrates the electrostatic field associated with
the function defined in equation (4.6). The equipotentials
plotted are given by

g(x,y) = — 1,0and +1,
whilst the electric field lines are given by

h(x, y) = —ﬂ+2’;”, n=0,1,...6.

The branch cuts in the plane are due to the discon-
tinuity in the arctan function as the arguments increase
from [cos (7 — ¢€), sin (7 — €)] to [cos (7 + €), sin(7 + €)], €
being a small positive number. Since seven lines of
constant arg(f) are plotted, the order of a zero or pole
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Zeros of functions

is found simply by dividing the number of lines issuing
from a singularity in log (f) by seven.

6. Convergence regions for a simple descent method

Consider the iteration formula

f(z)

Zy =2z — A2 6.1
' Gy @D
which reduces to Newton’s method when A = 1. It is
easy to show (e.g. Lance, 1960) that one stage in the
iteration represents a step in the complex plane, of
finite length, in a direction tangential to the line of
steepest descent in the log |f| surface at the point z.
The real, positive number A simply fixes the length of
the correction step. If the step length is made small by
making A small the iteration will proceed along a line
of steepest descent in the log |f| surface, i.e. along a
field line, away from a pole and towards a root, in the

associated electric field.
The electrostatic field associated with f{z) now provides
a useful heuristic basis for discussion of the convergence
of iteration formula (6.1) in the limiting case where A is
small, for we need only consider the disposition of field
lines in relation to charges and null points. In general a
field line starts (high potential end) and finishes (low
potential end) either on a charge or at infinity. Also,
apart from charges and null points, exactly one field
line passes through every given point in the (x, y) plane.
Field lines which pass through null points are termed
“critical”, and such a field line will only intersect charges
of the same sign, whereas an ordinary field line will

FIELD LINES

CHARGES OF STRENGTH -1

CHARGE OF STRENGTH +1

EQUIPOTENTIAL
LINES
/

BRANCH
CuTS

CHARGE OF
STRENGTH +2

Fig. 2.—The electrostatic field associated with

(2= =)
&= e Fip

start at a positive charge (pole) and end at a negative
charge (zero), either of which may be at infinity. Thus
from any starting point not on a critical field line the
iteration must converge to a zero, either at infinity or
in the finite part of the plane.

The convergence region for any particular zero is
simply that region in the complex plane which exactly
contains all the field lines which end at that zero. More-
over, the boundaries of the convergence regions are those
critical field lines which do not pass through zeros,
since it is impossible for the iteration to cross such a
line. Thus in order to delineate the convergence regions
we simply evaluate arg(f) at the points where

d
dz [log (/)] =0

and plot contours of arg(f) at these heights, in the
region of interest.

Fig. 3 illustrates the convergence regions for the
function defined in equation (4.6) under this small step
limit of Newton’s iteration, the picture corresponding
exactly with Figs. 1 and 2. The points A, B and C are
null points in the electric field, i.e. the zeros of

%{log [f(2)]}. It will be seen that the convergence

region for the zero at z = i completely encloses the
convergence region for the zero at z = 1, and this in
turn is completely surrounded by the convergence region
for the root at infinity. One curious consequence of the
disposition of the convergence regions is that, from the
starting point S, the iteration will converge to the zero

R LI

" CONVERGENCE | REGION -
/' FOR z=i -
/

L/ /
L EQUIPOTENTIALS 1
\

CONVERGENCE REGION FOR THE
ROOT AT INFINITY

Fig. 3.—Ceritical field lines associated with

=1z =)
O~ e i
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Zeros of functions

at z = i, not to the nearer zero at z = 1, even though the
point z = 1 lies between S and the point z = i. Notice
also that the critical field lines which pass through
zeros, but not poles, delineate the convergence regions
. 1 . . .
for the function f(_)’ and in this case dissect the plane
4
into two infinite parts.

7. Some general remarks on convergence regions

If A in equation (6.1) is a finite positive quantity the
iteration will in general step onto a new field line at
every stage. This means that an iteration starting from
within a convergence region for the small A case could
well step out of that region either towards infinity or to a
different root. It is difficult to be precise but intuitively
one would expect this danger of “wandering” to be great
if

(i) the iteration starts near to a convex part of the
boundary of a convergence region for the small
A case,

or (ii) the iteration starts near to a root of dﬁ [log ()],
1z
or (iii) A is large.

In particular a Newton iteration starting from the
point S in Fig. 3 will diverge to infinity, and there exists
a significant region surrounding the point B from which
the iteration also diverges to infinity; moreover, the rate
of divergence in both cases is considerably aggravated
as A is increased. Lance suggests a procedure of
increasing A up to N, the first integer for which

f[z — (N +1). f] f[z —N. 1]] a1

ik 7

given that

tf[z = Nﬂ} <1/

However, in view of the example taken the author con-
cludes that this is unwise as a general practice; it cer-
tainly appears that finite-sized convergence regions
become smaller as A is increased.

Now consider a zero of f(z) surrounded by its asso-
ciated convergence region under the iteration (6.1),
where A is finite. We can regard (6.1) as a conformal
mapping which transforms the point z, inside the con-
vergence region, into the point z; which in some sense
is nearer the zero than z is. Moreover (6.1) maps the
entire convergence region onto itself so that, in particular,
the boundary of the region is a curve which is invariant
under the conformal mapping

&)
/@)

The points which transform into themselves under (7.2)
are given by

w=z—2A

(7.2)

o)
@Y

(7.3)
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i.e. they are the poles and zeros of f(z). Clearly the
zeros of f(z) must be invariant under (7.2) or the iteration
would never converge; the fact that the poles are also
invariant indicates that it will be inefficient to start the
iteration from near to a pole. Similarly, the convergence
regions for an iteration procedure of the general type,

w = F(z) (7.4)

must be mapped onto themselves by the conformal
transformation.

An illustration of the concept is given by the appli-
cation of Newton’s method to the function

fz) =

¥4

g (7.5)

In this case the conformal mapping (7.2), with A =1,
becomes

(7.6)

which transforms the unit disc into itself. Thus, for
Newton’s method, the unit circle marks the boundary
of the convergence region associated with the zero of
the function defined in equation (7.5). Fig. 4 shows the
electrostatic field picture of this function, and the pro-
gress of two Newton iterations is marked, illustrating
the role of the unit circle as the boundary of the con-
vergence region.

W= z2

8. Contours of some typical functions

The examples portrayed in Figs. 1, 2, 3 and 4 illustrate
some general topographical properties of rational
functions. As far as zeros and poles are concerned the

Y

1
<
&
\ \FiELD LINES

'BRANCH CUT

BOUNDARY OF
CONVERGENCE REGION

z

Fig. 4.—The electrostatic field associated with f(z) = po

showing the progress of two Newton iterations
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electrostatic field analogy seems to the author to be the
easiest way of visualizing such a function. One
interesting result of this analogy is the fact that Lucas’s
theorem, which states that the zeros of the derivative
of a polynomial must lie within the smallest convex
polygon which contains all the zeros of that polynomial,
is physically obvious from the fact that no null points
in the electric field can lie outside this polygon.

0

v
\,

N

BRANCH CUTS

AN 0

u=0

Fig. 5.—Contours of the real and imaginary part of
(z — D2

f(z) = T

_Log Itl=-1
/7

yany

o)

\Log.lfl =4l

BRANCH CUT

Log. Ifl = 0—

Fig. 6.—The electrostatic field associated with
(z—D2

f@@) = T
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By way of further example, contours of some other
common functions are shown in Figs. 5, 6, 7, 8,9 and 10.
Fig. 5 shows contours of the real and imaginary parts of

(z — )2

flz) = N (8.1
and Fig. 6 shows corresponding contours for its logarithm,
thus illustrating behaviour near zeros and poles of
fractional order. In this case the position of the zero

UNRESOLVED
REGION

Fig. 7.—Contours of the real and imaginary parts of

fz) = ellz

FIELD LINES
//

UNRESOLVED

REGION EQUIPOTENTIALS

NN

Fig. 8.—The electrostatic field associated with f(z) = e!/z
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is not clear from Fig. 5, but is quite plain in Fig. 6.
Fig. 7 shows contours of the real and imaginary parts of

f2) = ellz (8.2)
near the isolated essential singularity at z = 0; as is
well known, behaviour of the function near this point
is seen to be very complex. However, the electric field
analogy, portrayed in Fig. 8, is much easier to under-
stand, and illustrates that (8.2) represents an electric
dipole situated at z = 0. An essential singularity as a
limit point of poles is exemplified by the function

f(z) = cosec (1) 8.3)

V4
which has such a singularity at z = 0. Figs. 9 and 10
illustrate contours in the real and imaginary part of

cosec (1) and its logarithm. Near the essential singu-
¥4

larity the structure is too fine to be resolved by the
finite mesh, but the general features are clear enough to
establish the existence of a concentration of singularities
near the origin.

9. Implementation of the technique

All the graphical results presented above were obtained
using a computer program written by the author in a
dialect of FORTRAN. The computer used was the
IBM 7030, or Stretch, at A.W.R.E. Aldermaston, and
the automatic graph plotter was the Bensen-Lehner
Model J. The program is in general use at the Culham
Laboratory of the U.K.A.E.A., only a minimal know-
ledge of computing being required. Normal operating
procedure, given the function f{z), is to compute contour

TN\

N
AN )
WeTam YAV
(]

4
é%‘“v N,
NNy

S~

UNRESOLVED
REGION

Fig. 9.—Contours of the real and imaginary parts of

f(z) = cosec (1)

z
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graphs over a finite rectangle in the complex plane, and
thence proceed either to iterative zero-finding or to
further contour graphs over a smaller rectangle con-
tained in the original one. However, a number of pro-
gram options provide a good deal of flexibility in
operation and output, and no single procedure can be
regarded as “‘the best” in all circumstances.

The contour graphs have been edited somewhat for
the purpose of presentation, but this editing consists
largely of annotation and is not normally required in
everyday work. In practice automatic contour plotting
has been fcund, over a period of two years, to be a very
versatile form for presentation of computed results, and
its use at the Culham Laboratory is by no means confined
to the study of functions of a complex variable.

The iteration procedure available in the program is of
the form

=1z )\KZA) 9.1
g(z)
. . N df .
where g(z) is a 3-point approximation to p In Fig. 11
z

the points z,, z, and z; are spaced equidistantly around
the circle centred on z, and the approximation to the
derivative is given by

2

4ir
df . fe) e 3 fiz) £ flzy)
d_z = o(Z) = 3(z, — 2) —. 9.2

Normally A is set equal to unity but is reduced appro-
priately, after first trying a more accurate estimate of

gf, if [f(z")] is found to be greater than |f(z)|. The
'z
BRANCH CUT
/
/
log. If1 =0
POLES /

|

NULL .~
POINTS ~

UNRESOLVED
REGION

FIELD LINES

Fig. 10.—The electrostatic field associated with

f(z) = cosec (;)
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radius of the circle, on which z,, z, and z; lie, decreases
as the iteration converges, as shown in Fig. 11. This
df
dz
whilst retaining quadratic convergence characteristics
similar to those of Newton’s method proper. A dis-
advantage is that f(z) must be computed three times at
every stage, but the method’s inherent simplicity and
reliability make it attractive for cases where f{(z) is easily
computed. Moreover, this iteration is convergent in
many cases where Newton’s method proper is divergent,
since the limiting case, when A is made small, must be
convergent.

method avoids the necessity for explicit evaluation of

10. Conclusions

An automatic graph plotter, used as an on-line or
off-line digital computer output device, is capable of
providing reasonably accurate regional and global
information about functions of a complex variable.
This information, in the form of the approximate
locations and types of zeros, singularities and branch
cuts in the complex plane, enables one to choose starting
points for a zero-finding iteration so that convergence of
the iteration may be guaranteed. In special cases the
convergence region for a particular zero may be located
exactly, but in any case a preliminary graphical study
can isolate the zero well enough to inspire confidence
in the convergence of a subsequent iteration. Moreover,
the physical insight provided by the electrostatic-field
interpretation of a function of a complex variable is
helpful in understanding the function generally, as well
as in guiding one’s choice of a starting point for the
iteration.
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Fig. 11.—Progress of Newton-type iteration

The contour graphs presented illustrate how general
features of a function may be recognized at a glance.

Acknowledgements

The author is indebted to a number of colleagues at
the Culham Laboratory, both visitors and permanent
staff, for helpful discussions on the above work and for
programming assistance; also to the U.K.A.E.A. for
permission to publish.

Methods of NewToN and BaIrsTow: see, for example, Modern Computing Methods, published by the National Physical

Laboratory, 1961.

GRAEFFE’S method: see, for example, The Calculus of Observations, by Whittaker and Robinson, Blackie & Son, 1952.
LANCE, G. N.: Numerical Methods for High Speed Computers, lliffe, 1960.

MULLER’s method: ibid.

219

¥202 I4dy 61 U0 3senb Aq Ly6€E L /2L 2/E/L/e1ome/|ulwoo/wod dnosojwepede//:sdiy wolj pepeojumod



