Error estimates for smoothing and extrapolation formulae

By Leendert de Witte*

A standard smoothing procedure consists of least squares fitting a polynomial Q,,(x) of degree m
to 2n + 1 observed points and replacing the midpoint (nth point) by the value of the polynomial.
In many applications of trajectory extrapolation, or acquisition and reacquisition in radar tracking,
it is desirable to smooth at or near the end-point of the observed data. Considering Q,(x) as a
linear combination of a set of orthogonal polynomials Py >,(x) of degree g << m the error reduction
factor for smoothing at an arbitrary jth point is found to be given by
£y = £ PentD)
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where S; = ZP& ~(x) and the total number of observed points, N -+ 1, used in the smoothing

may be even or odd If the jth point belongs to the set of N + 1 points, then f(j) = a;;, that is,
the smoothing factor is equal to the j coefficient of the jth point smoothing formula. Milne’s
expression for the smoothing factor in midpoint smoothing forms a special case of the above

results.

One method of deriving formulae for smoothing equally-
spaced data consists of obtaining the least-squares fitted
polynomial of degree m through 2n -+ 1 successive points,
and replacing the function value at the central point
with the value of the fitted polynomial. A detailed
description of this method is given in Milne’s Numerical
Calculus, together with an estimate of the “smoothing
factor,” which is an estimate of the improvement
achieved by smoothing.

In this paper, the method is generalized by allowing
the replacement point to wander from the central
position, and expressions are derived for the value of
the smoothing factor for arbitrary position of the
replacement point. The relations are useful at the ends
of a table or for extrapolation problems. End-point
smoothing finds important applications in radar tracking
of missiles, where a smoothed estimate at the last
observation point may be required for reasons of
response time or range safety.

Smoothing factors for non-central formulae

Assume a set of 2n -+ 1 observations of the function
u(x) at equally spaced values of x(x =0, 1, 2, . . ., 2n).
Denote the true values of u by u;, the observed values by
v, and the errors in the observed values by e;. Similarly,
denote the smoothed values by y; and the errors in the
smoothed values by e/, so that:

yi=u +e yi=u; + .
The smoothing factor is then defined by:
fo = Z(e)*/2(e)? )

where X denotes summation for fixed i for many
repeated observations.

By least-squares fitting a polynomial Q,,(x) of degree
m to the 2n -+ 1 observed points, the expression for the
smoothed central (nth) point may be written as:

.V:Iz = an,OyO 'Jf_ an,lyl + L + an,nyn + LI an,2ny2n' (2)

Considering the polynomial Q,(x) to be a linear com-
bination of a set of orthogonal polynomials P, ,,(x) of
degree g < m, the coefficients a, ; are given by:
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Milne showed that for central smoothing f; is equal to
the mid-coefficient of the smoothing formula, i.e.

fs = ap, p- (4)

In non-central smoothing or extrapolation we want to
find the polynomial value at an arbitrary jth point of a
set of N + 1 points, where N may be either even or odd.

The value of the polynomial at any such point can be
expressed in analogy to (2) and (3) by:
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or  Qu(j) =Y ZO P2 n(x)

Since y; is a linear combination of the observed y values,
then for uncorrelated Gaussian errors in the observations

we have:
(€)= a?.o(@—o)2 +a 1)+ ... + dy (en)?

and ()2 = (exs 1)? = (¢))* so that:

) = @FlEy = X a.
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Error estimates for smoothing formulae

Expanding the square in (6) we find that it contains terms
of the form:

[Pg,N(x;fg,N(j):l 2

and terms containing cross products of the form:

Pg N(x)Pg N(J) PunX)Ppn(j) .
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Considering the first type of terms, the summation in (6)
with respect to x yields:
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The summation over x of the cross products vanishes
because of the orthogonality property of the poly-
nomials P, y(x), so that (6) reduces to:

m 2 ;
1) = & Tard) ™

For 0 < i < N we have from (3):

S =a,; ®)

that is the smoothing factor for jth-point smoothing
procedures is equal to the j coefficient in the linear
expression of the least-squares fitting polynomial in
terms of the observed quantities. Clearly Milne’s
result (4) is a special case of (8). For smoothing formulae
using replacement at points belonging to the observed
sequence we find the error reduction in the smoothing
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process from (8). For extrapolation we have to use
relation (7). For end-point smoothing we have the
relation:
m P2 (N
FV) = ayy = 3 P )
g=0 Sg
By expansion of the polynomials in (9) and some further
manipulations it can be shown* that for mth order
smoothing
(m + 1)
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for large m, while the right-hand side forms an upper
bound for smaller m. This same result was obtained
using a completely different approach by Proschan (1961).

Numerical examples

For a third-degree central smoothing formula using
21 points we have f(11) = a,;,;; = 0-108.
For replacement at the 17th point we find:

f(A7) = ay4,,7 = 0-374.

For the end point: f,(21) = a;;,,, = 0-75.
For smoothed extrapolation at the 22nd and 23rd
points

f{(22) = 1-13 and f,(23) = 1-63.

The latter type extrapolations find application in
acquisition or reacquisition of targets in radar tracking.
We note that beyond the range of the observed data
accuracy deteriorates very rapidly.

* Private communication by Dr. H. C. Joksch, of the MITRE
Corporation, Boston, Mass.
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