A new method for the solution of eigenvalue problems

By M. R. Osborne*

One among the class of iterations proposed by Osborne and Michaelson (1964) is discussed. It is
shown that for the ordinary eigenvalue problem this iteration is of third order, and that it may
readily be modified to be of third order for the general eigenvalue problem provided the eigenvalue
parameter occurs linearly. The analysis also suggests a further modification which gives a third-
order iteration for the non-linear problem.

1. Introduction

In a recent paper (Osborne and Michaelson (1964)) the
author has discussed the solution of eigenvalue problems
having the form

M(\)v = 0. (1.1)

Here the eigenvalues are found as the zeros of a function
B(A) defined by imposing a scaling condition on the
solution vector v in the equation

MO\ = B(V)x. (1.2)

By scaling » so that one component is fixed in value
independent of A, and by applying Newton’s method to
the resulting function B(A), Osborne and Michaelson
derive the iteration

MQ)v;y = xi/(xi)p,-,

aM
MA)x; = d_/\()\i)”iJrl (1.3)

(vi+ l)pi+1

Aip1 = A —
it ! (xi+1)pi+1
where p; is the index of the component of maximum
modulus in x;. In this paper iterations similar to (1.3)
are discussed with a view to determining their order.
(We say an iteration is of order p if 8, is proportional
to 67 where §; is a parameter giving a measure of the
error at the jth stage of the iteration.)

In the next section the ordinary eigenvalue problem

M

is discussed (d— = — I). In this case the iteration of

Osborne and Michaelson is of third order. Conditions
sufficient to ensure the convergence of the iteration are

also given. In Section 3 the case = — B, where B

aM
ax
is a constant matrix is discussed. A modification of the
basic iteration (1.3) is introduced and shown to be of
third order. The iteration (1.3) is second order in this
case. In Section 4, the case where M depends nonlinearly
on A is considered. Here both the iteration (1.3) and
the modified iteration are of second order in general.

However, the analysis suggests how the iteration might
be modified to give third-order convergence, and it also
suggests a possible second-order iteration which would
require the solution of only one set of linear equations
per step.

In the case in which M depends linearly on A the
iteration (1.3) amounts to two stages of inverse iteration
followed by a shift in the origin of A. It is of con-
siderable interest that a third-order process can be
obtained merely by carrying out two inverse iterations,
keeping the same A (requiring one triangular factorization
and two forward and back substitutions), as inverse
iteration is anyway recommended for the calculation of
eigenvectors (Wilkinson (1958)).

It must be stressed that the iterations discussed in this
paper apply only for simple eigenvalues, and must be
modified to deal with repeated eigenvalues.

2. The ordinary eigenvalue problem

In this section it is shown that the iteration

[4—AIv, = xi/(xi)pi,
A — A,I X; = — v; s
[ Ixis1 +1 @)
(”i+1)p,-+1
1= — ——~——
(xi-l- I)P,'+1

is of third order. It is assumed that the eigenvalue being
determined is distinct. Let this eigenvalue be u, then
the precise assumption made is that

min (|p; — pls [y — X)) > a (2.2)
J

where the index j runs over the other eigenvalues of A.
The need for the introduction of the parameter a, and
its numerical significance, are discussed in Wilkinson
(1961). Initially it is also assumed that the matrix 4
has a complete set of eigenvectors #; scaled so that their
maximum norm is 1. Whenever norms are used in this
paper the maximum norm is assumed.

Further, it is assumed that x;/(x;),, is an approximation
to u, in the sense that

x;/(x)p = afuy + q;, (2.3)
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where g, = X odu; (2.4)
=2

and lgill < 2 ol < 8 @5

and that A, is an approximation to y, in the sense that
A= py + 8 (2.6)

It is assumed that the parameter & is small, and that the
parameter 7 is of the same order of magnitude as a.

Theorem. 1If 8; <}, and |n;| < 1-5a, then for any j > i

8j+1 < 5'483,
[j+1] < 1-5a,

and the iteration is convergent.

Proof. From equation (2.1) it follows that

“l

”i+1=—8—7]"1+’z+1 (2.7
h i1 = S is 2.8
where Fiiq E‘z v — )‘iuj (2.8)
and llrivall < difa. (29
AlSO x,-+1 = — (g%)?ul + Si+ 1 (2.10)
i o
where Sit1= — 122 (,U.—J:‘:—jh)z s (211)
and [1si1]] < 8i/a®. (2.12)
Now, by equations (2.1) and (2.6),
8 _'7 (ul)p,+1 (rH—l)PH_]
pi— Aipr = p— A+ -
(W(ul)mﬂ = Givpi iy

(Si"]i)z(si+l)17,~+l - (Si")i)("i+1)p,-+1

= 81”’]:‘

a{("l)pi+ 1 (0:m)*(si+ 1)p,»+ 1
(2.13)
Also, by equations (2.3) and (2.5)
1 -8, < || <1+ 8,
and by equations (2.10) and (2.12),
i 817’ 81771 ‘I
|ad| — < |al(ll1)p,+ll + ! .14
l .
so that |rx1(ul),, l=1=08— 283 2/02 ]

(It is readily verified that the numerical values of §; and
|n;/a| stated in the theorem permit these inequalities to
be satisfied with positive values on both sides of the
inequality).

229

By taking moduli in equation (2.13), and using
equations (2.9), (2.12), and (2.14) there is obtained

§?_’7? 1 + &;]n;/al

a 1— 36, —38%a*
Writing v; for |n,/a|, and dividing both sides of equation
(2.16) by a gives

Sivtlmical < (2.15)

1 + 8;y;
8,+1')/,+1 8 y'l _ 8,(1 + 3’)/‘28%) (216)
Further X1/ (Xis)p, o = af Tluy + gy
where, by equations (2.10), (2.12), and (2.14)
8yi

(Clearly, by the manner of its construction, the right-
hand side of equation (2.17) provides a bound for

E |ai+!| so that it can be used to define 8;,,). From
equatlons (2.16) and (2.17) it is seen that
8i+1')’i+1 S h—l(l + Siyi)

Yigr1 < 1+ 8y (2.18)

Substituting the numerical values of bounds for §; and
y; (noting that y; < 1-5 for all values of a) shows that

whence

(a) from equation (2.18), ;. < 15
(b) from equation (2.17), 8; ., < 1/5 < 1/3.

Therefore the conditions of the theorem are satisfied for
j =1+ 1 (and hence for all j > i) if they hold for j = i.
The first part of the theorem is now obtained by inserting
bounds into the coefficient of 82 in equation (2.17),
while the second part follows immediately from (a)
above. A direct computation using equation (2.15) gives

0-65;] 7, (2.19)

and as the bounds used in obtaining this inequality are
valid for all j > i, the inequality is also valid for allj > i.
This, plus the result that ;. ;| < 5-483, shows that the
iteration converges.

In the case where the matrix 4 has principal vectors
of grades > 1 the argument given above requires some
modification. The crucial steps in the argument involve
the bounding of ||r; .|| and ||s;4 || (equations (2.9) and
(2.12)). Assume that u, is a principal vector of grade
two associated with the eigenvalue u,. Then

(A — p Dy u, =0,

Sivalmiril <

whence

(A - AI'I)up + 2(""r - Ai)up

+ (pr — A4 — NI, = 0. (2.20)
Taking norms in this equation gives
2||u |4 — NI|| |||
H(A _ AiI)—lan < aPH + | azl H P‘ (2.21)
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and

164 = D) < 214 — a1y )| + 1l 2.2
The most significant feature of equations (2.21) and
(2.22) is the occurrence of terms in 1/a?> and 1/a’
respectively. It is readily verified that the corresponding
inequalities for a principal vector of grade m involve
inverse powers of a of orders up to the mth and (m + 1)th
respectively. A possible corollary of this is that the
numerical difficulties usually experienced when a is
necessarily small are intensified if the close eigenvalue
has associated with it principal vectors of grades higher
than one.

3. A more general eigenvalue problem
In this section is considered the eigenvalue problem
[4 — AB]Jv = 0. 3.1

If the matrix B has an inverse then the problem stated
in equation (3.1) can be reduced to that considered in
Section 2 by multiplying by B~1. The iteration (2.1)
applied to the matrix B~ !4 is equivalent to the iteration

[4 — ABlviy = Bxi/(xi)p,-
A— AMBlx;., = — Bv;, -
[ Txis1 +1 3.2)
(”i+1)p,-+,
)‘i+1 = )\i (v
(xi+l)pi+1

This iteration differs significantly from that proposed by
Osborne and Michaelson in the definition of v;, ;. It
will be shown to be of third order even when the matrix
B does not have an inverse. The iteration proposed by
Osborne and Michaelson gives only second order con-
vergence for the problem (3.1).

First the solution of equation (3.3) is considered

[4— ABly=x (3.3)

where A, = A + §;, and A is an eigenvalue of equation
(3.1), so that 0 is an eigenvalue of the matrix [4 — AB].
It is assumed that the other eigenvalues of the matrix
[4 — AB] are pu,, ..., u, that w; is the eigenvector
corresponding to the zero eigenvalue, and that the
kis i=2,..., n, satisfy the condition (2.2). The
similarity normal form of [4 — AB] is written TMT!,
where M;; = 0. The vectors y and x have repre-
sentations which are written

y=Ta, x = TP. 3.4)
In this notation equation (3.3) becomes
[4 — A:Bly =[4 — AB]y — §;By

= TMoa — 6;BTa
s0 that, defining G to be the matrix — T~ !BT,
[M + 8,Gla = B. (3.5

Equation (3.5) is represented in the partitioned form

3Gy, o8 [“1} [/31:'
= . 3.6
gk LE]=15 (36)
If 6, is small enough then (by the condition (2.2)) K
possesses an inverse, and equation (3.6) gives
£ = K~'n — 015.0) b e
3;Gioy + 8,8"K~'(n — o, 8,f) = By )
whence

. Bi Bi _ g'K '
=56 (G_ﬁgTK f— _GT) + O(8)),
and (3-8)
B

= K- n — — :

Notes.—(1) Because of the term g—l f, & can be O(1)
11

even when 7 is O(8;) so that the projection of the vector
x on vectors other than the appropriate eigenvector is
small. It is this that causes the iteration of Osborne
and Michaelson to be of second order only. In parti-
cular, for this iteration, equation (3.12) does not hold.

(2) It is the matrix K—! that contains the terms O(1/a)
when the spacing between the eigenvalues is small.

(3) If G;; = 0 then, by equation (3.7), «; = O(1/8?).
In this case it is readily seen that the iteration (3.2)
cannot be satisfactory if indeed it converges at all.

Now let x,-/(x,-)pi be an approximation to u; in the
sense that

xi/(xi)p,- = au, + 0q; (3.9)
where a; and ||g;|| are O(1). From equation (3.1)
[4— @ — Si)B](xi/(xi)p,- — 8,4) =0
whence
[4 — A\;Blau, = — &;Bx;/(x;),, + 8}Bq;.  (3.10)
Also, from equation (3.2),
[4 — ABJov; ) = Bini/(xi)p,-
so that
[4 — A\B](8;v; 4 + au,) = &?Bq;. (3.11)

Using equation (3.8) with § = T~ !Bgq; gives

djvipy + auy = |:8i£—1_ + 0(5%)}”1 + rig (3.12)
1
where 1712111 = O(8)
Thus Viy1 = a;‘"l + 8,"‘1*4.1 (3.13)
where af = 0(1/8,), and ||rf ]| = O(1).

The argument used for deriving v,,,; can be used
again to derive x;, ;. Defining y to be T—!Br},,, then

— 8,-x,-+1 + a,’lu[ = [8,%‘ + 0(812)]"1 + SH_] (3.14)
11
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where lIsi1]] = O(8%). (3.15)
Define s}, to be the vector 872s;.. .

The error in the next approximation to the eigenvalue
can now be estimated. From equation (3.2)

A=A+ 84,

af("n)p. + 8,(vfy I)p-
i+ 1 i+1

Coat 8

5;[1 'y1 + 0(32)](141),, g — 0ilsi)

where the fact that af = O(1/4,) has been used,
=X + O(3)). (3.16)

It follows from equations (3.14), (3.15) and (3.16) that
the iteration (3.2) is of third order.

Pi+1

4. The non-linear problem
The general form of the eigenvalue problem is
MN)u, = 0. 4.1

Iterative methods for the solution of this problem are
considered in this section. The notation of Section 3 is
followed here.

Expanding equation (4.1) by Taylor’s theorem gives

8 d’M
{0y~ 52 0+ 5 L b, — 500 =0,

where A is a mean value between A and A;, so that

aM
M(A)au, = Siﬁ (?‘i)xi/(xi)pi

d aM
8%{%(A,)q, +3% 'dA—z (x)(xi/(xi)p,' - Slql)} (42)

In the first stage of the iteration a vector v;,, is cal-
culated from

aM
M(A)dv; = SiEX()‘i)xi/(xi)pi 4.3)
so that

8 d2M
2 dA2 (a)xl/(xx)pl
S d*M
+ 3G 00— 3 Ta )

— 8y, (4.4)

. . . aM 8; d*M
Using equation (3.8) with B = Y ) — > A

MA)(Sv; 4y — auy) =

and B = T~ 1y, gives
IBI

80y —auy = { + 0(32)}"1 +riv, (45)

231

where [Irisi]] = O(8?). (4.6)
Thus v, = atu + 8;rf 4.7
where ar = 0(1/§,), and ||r}. || = O(1).

The vector x;, is now calculated using equation (1.3).
The previous argument gives

8 d*M
M(A)(8x;4 1 — a; Tu) = 7 e N4y
8; d*M
+ B0 — 3 G

= Sizi. (4.8)

The right-hand side of equation (4.8) is only O(8;)
because of the occurrence of the term involving v, ;.
Again applying equation (3.8) (with f = T~ 'z;) gives

Sreirs — atmy = { £+ 0@ 5101 @)

Hsi+1H = 0O(3)).

From equations (4.9) and (4.10) it is seen that the error
in x4 1/(Xi41)p;y, 18 proportional to the square (not
cube) of §;. Calculating the error in A;,; using equa-
tions (4.7) and (4.9) shows that this is also O(8%). Thus
this iteration is only of second order.

To obtain a third-order iteration it is necessary to
reduce the right-hand side of equation (4.8) to O(8?).
One possibility follows from noting that, by equation
(3.9),

where (4.10)

ai(ul)pi =1+ 0(3)) 4.11)
so that, by equation (4.5),
1
(viy l)pi =S, + O(1). (4.12)
If x;, ; is now defined to be the solution of
dM 1 d*M
MQA)x;., = liay AN — ( )p a2 (A )}
4.13)
then, using that A; — A = O(§;), it is found that
M) Sx;. — afu,) = 0(5%) (4.14)

so that this modification gives a third-order iteration.
Equations (4.5) and (4.12) also suggest that the iteration

aM
MQA)v; = ) ()‘i)vi/(vi)p,-,

_1
(G 1),;,-

is of second order. This iteration has the advantage of
requiring the solution of only one set of linear equations
per step. The author has not been able to derive this
iteration by the methods used in Osborne and Michaelson.

(4.15)
Aip1 = A —
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5. Conclusion

In this paper the class of iterations discussed by
Osborne and Michaelson has been examined critically
with a view to determining the rate of convergence, and
modifications have been suggested which ensure that
the iteration is of third-order. The modified iteration
(3.2) has already been tested and proved effective. The
results obtained have been consistently better than those
obtained using the iteration (1.3).

The iteration (4.15) has been tested on a family of
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An error analysis of finite-difference methods for the numerical
solution of ordinary differential equations

By M. R. Osborne*

A method is given for the calculation of strict, a-posteriori error bounds for the numerical solution
by finite-difference methods of ordinary linear differential equations. The suggested procedure
is illustrated by some numerical results for a particular differential equation.

1. Introduction

This paper is concerned with the derivation of strict,
a-posteriori error bounds for the solution of ordinary
differential equations by finite-difference methods. The
basic idea of the method of error analysis is due to J. H.
Wilkinson who has applied it to obtain strict error
bounds for the solutions of sets of linear algebraic
equations (see Wilkinson (1963) and the references
quoted there). He argues as follows. Let the set of
linear equations to be solved be

Ax = b (1.1)

In any process of calculation rounding errors almost
always occur so that the process of numerical solution
leads not to x but to a vector z satisfying the system of

equations
(A + 84)z = b + 8b. (1.2)

By a careful analysis, bounds can be found for the
magnitudes of the elements of 64 and 6b. By suitably
combining equations (1.1) and (1.2) and taking norms
the result is obtained that

|I(4 + 34)~1]|
1—[|(4 + 34| || 34]|

{I138]| + [[34]] |=[[}- (1-3)

l|x — 2] <

At this stage the quantities on the right-hand side of
equation (1.3) can be estimated with the exception of
[|(4 + 84)~'|| but, as equation (1.2) is the equation
which is actually solved, there remains the possibility
of obtaining at least an upper bound for the norm of
the inverse of (4 + 84).

An essential feature of the argument is the representa-
tion of the vector z as the solution of a set of linear
equations. This permits the original problem to be
treated as a perturbation of the one actually solved
once bounds have been obtained for 64 and &b.

In general an error analysis of Wilkinson type does
not seem to be applicable to the numerical solution of
differential equations by finite-difference methods. This
is because the process of solution requires the inversion
of an operator of a different kind (the operator associated
with a finite system of linear or non-linear algebraic
equations) to the operator in the original problem.

This difficulty can be avoided in the case of finite-
difference approximation to ordinary linear differential
equations. Here it can be shown that the solution of
the differential equation is also the solution of a linear
difference equation, and bounds can be given for the
difference between the coefficients in this equation and
those in the equation produced by finite-difference
approximation. The exact difference equation leads to
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