Eigenvalue problems

5. Conclusion

In this paper the class of iterations discussed by
Osborne and Michaelson has been examined critically
with a view to determining the rate of convergence, and
modifications have been suggested which ensure that
the iteration is of third-order. The modified iteration
(3.2) has already been tested and proved effective. The
results obtained have been consistently better than those
obtained using the iteration (1.3).

The iteration (4.15) has been tested on a family of
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An error analysis of finite-difference methods for the numerical
solution of ordinary differential equations

By M. R. Osborne*

A method is given for the calculation of strict, a-posteriori error bounds for the numerical solution
by finite-difference methods of ordinary linear differential equations. The suggested procedure
is illustrated by some numerical results for a particular differential equation.

1. Introduction

This paper is concerned with the derivation of strict,
a-posteriori error bounds for the solution of ordinary
differential equations by finite-difference methods. The
basic idea of the method of error analysis is due to J. H.
Wilkinson who has applied it to obtain strict error
bounds for the solutions of sets of linear algebraic
equations (see Wilkinson (1963) and the references
quoted there). He argues as follows. Let the set of
linear equations to be solved be

Ax = b (1.1)

In any process of calculation rounding errors almost
always occur so that the process of numerical solution
leads not to x but to a vector z satisfying the system of

equations
(A + 84)z = b + 8b. (1.2)

By a careful analysis, bounds can be found for the
magnitudes of the elements of 64 and 6b. By suitably
combining equations (1.1) and (1.2) and taking norms
the result is obtained that

|I(4 + 34)~1]|
1—[|(4 + 34| || 34]|

{I138]| + [[34]] |=[[}- (1-3)

l|x — 2] <

At this stage the quantities on the right-hand side of
equation (1.3) can be estimated with the exception of
[|(4 + 84)~'|| but, as equation (1.2) is the equation
which is actually solved, there remains the possibility
of obtaining at least an upper bound for the norm of
the inverse of (4 + 84).

An essential feature of the argument is the representa-
tion of the vector z as the solution of a set of linear
equations. This permits the original problem to be
treated as a perturbation of the one actually solved
once bounds have been obtained for 64 and &b.

In general an error analysis of Wilkinson type does
not seem to be applicable to the numerical solution of
differential equations by finite-difference methods. This
is because the process of solution requires the inversion
of an operator of a different kind (the operator associated
with a finite system of linear or non-linear algebraic
equations) to the operator in the original problem.

This difficulty can be avoided in the case of finite-
difference approximation to ordinary linear differential
equations. Here it can be shown that the solution of
the differential equation is also the solution of a linear
difference equation, and bounds can be given for the
difference between the coefficients in this equation and
those in the equation produced by finite-difference
approximation. The exact difference equation leads to
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a set of linear equations which can be treated as a per-
turbation of the set obtained by finite-difference approxi-
mation. Thus, in this case, a theory of Wilkinson type
can be developed.

Another possibility for making an error analysis is to
interpolate the solution of the finite-difference equations
and then to compare this interpolation with the solution
of the differential equation. In this case the method
of interpolation provides another possible source of
error. An analysis of this kind has been given in
Schroder (1960).

It is readily shown that any solution of an ordinary
linear differential equation exactly satisfies a certain
difference equation. Consider the nth order ordinary
differential equation

L,(y) =0. (1.4)

This equation has a fundamental set of linearly inde-
pendent solutions U(x), ... , U,(x), and any solution
to (1.4) can be expressed as a linear combination of
them. Let y(x) be such a solution, then the linear
dependence implies

y(xy) y(x2) W Xni1)
Ul(xl) Ul(x2) e U](X,,,g.l) =0 (15)
Un(xl) Un(xz) e Un(xn—H)
for arbitrary distinct points x;, X, . . . . X,4+;. Equa-
tion (1.5) gives the difference equation in the form
n+1
;la,'y(xi) =0 (1.6)
where the a; are the signed cofactors of the y(x;).
Consider now the inhomogeneous equation
L(y) = f(x). (1.7

Using the method of variation of parameters, a solution
of this equation can be obtained in the form
¥ = [Fo{ Seou@ya. 08
j=1
If this expression for y(x) is inserted in equation (1.6),
the result is

n+1

T a) =% a JFo{ Se@uetd. @9)

The right-hand side has the form

X(n+1)

K@) f(t)dt

where K(t) is determined solely by the differential
operator L,. Equation (1.9) is the desired difference
equation.

In this paper the errors introduced by rounding are
ignored (so that all arithmetic is assumed exact), and
only perturbations of the finite difference equations to

F
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account for truncation error are considered. In taking
norms the maximum norm for vectors is used together
with its subordinate matrix norm (maximum row sum of
the modulus of the matrix).

In the following sections only second-order differential
equations are considered. However, there does not
appear to be any difficulty of principle in extending the
results obtained here to differential equations of higher
order. The results which form the basis of the method
are derived in the next section. The manner in which
these are applied to yield strict bounds for the error in
the numerical solution is described in Section 3. Two
methods for obtaining upper bounds for the norm of the
inverse of the matrix of the finite-difference equations
are given in Section 4, and a numerical example is given
in Section 5.

2. Derivation of the basic results

This section is devoted to a derivation of the following
result.

Ifx;.,=x;,—h< £
differential equation

x; + h = x; ., y satisfies the

YA +py® +qy =f, (2.1
and
h?
Ky =5 {0Q; + 16P,/h} <1 22)
where
Q; = max. [q(x)|
P; = max. | p(x)| LS XS Xty
then
WE) =o_yyiy + “f% + ol 1Yict
Bi
+ E(J’H-l —Yi-) vy (23)
where
lod1| + [od| + |edga] < (1 + 302Q,/8)/(1 — K;),
|Bi| < *P;/8(1 — K)),
il < W2F:[8 (1 — K)),
F; = max. | f(x)], -1 S X< Xjgq.
Also
yO(E) = ol_1yi-y + 0“,:)’1' + 0{+1yi+1
3;
+ ﬂ(}’iﬂ —Yic) +vi (24)
where
loia| + [of] + lo,+ | < 610 /(1 — K)),
8; < (14 2nP)/1 —
lvi| < 20 Fi/(1 — K)).

Two preliminary formulae are required for the deriva-
tion of equations (2.3 and 2.4). First the use of linear
interpolation plus remainder gives
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+—)*”(§o(x

xi1 < & & < x;,

=X
_x‘_)’:+1

i —Oxio — &)
2

Xip1 —
__ﬂ_£y+

1
Xit1— X Xit+1

+ y(z)(§2) (xi+1 — i)(’xl — f)

x; < €& € < Xipn 2.5
also
1 g
YO =30 = yim) + [ YO0
where 7 is defined by y; .y — yi—y = 2hy1D(n)
1
= 5 Wit1 = Yiz) + (& —yP(&)  (26)

by an application of the mean-value theorem to the
integral term.

Equations (2.3) and (2.4) can now be obtained by
iteration. First the second derivatives occurring in
equations (2.5) and (2.6) are expressed in terms of y and
yM using equation (2.1). [Equations (2.5) and (2.6) are
now applied to transform the resulting expressions into
ones in which mean values of y and y(V are replaced by
mesh values of y and mean values of y®. The mean
values of y® now have smaller coefficients provided &
is small enough. The whole procedure can now be
repeated iteratively and leads to equations (2.3) and
(2.4) in the limit. To prove convergence, and to derive
the inequalities on the coefficients, a dominant process
is constructed by replacing all quantities in the iteration
by upper bounds for their absolute values in x;_; <
¢ < x,.,;. The maximum value of the modulus of
y@ (&) in this range is denoted by ||y?||;.

Taking moduli and inserting upper bounds in equa-
tions (2.5) and (2.6) gives

h2
|Y(§)I < ly,'~1[ + I,Vi! + |J/i+1| + g”y(z)Hi, (2.7)

and

1
YOO < 55 [ie1 = yical + 20 [2][i - (28)

Clearly it is sufficient to begin the iteration with y® ().
Equations (2.1), (2.7) and (2.8) can be combined to give

P;
Hy(z)H’. < F; + 2 ]yi'[»l - yi—ll

+ Qi{lyl‘»ll + l}’ii + |yi+l|}+KiHy(2)||i-
2.9)

The inequality (2.9) can be solved for ||y?||; provided
K, <1 (h small enough), and this is equivalent to ‘in-
serting upper bounds into the iterative procedure and
summing the result. Thus the procedure implied in
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solving equation (2.9) for |[y®||; is the required domi-

nant. The solution is
F; P; |)"J-1 — J’f—1|
(2) ) _’ 17
Plli< =gtz 1ok

o
1 _Ki{|)’i+l| + il + [yical}-
(2.10)

The inequalities for the coefficients in equations (2.3) and
(2.4) are obtained by taking moduli in equations (2.5)
and (2.6), and using equation (2.10).

3. Procedure for the error estimate

The standard finite-difference approximation to equa-
tion (2.1) together with an expression for its truncation
error can be written

82y; + pihpdy; + h’q;y;
ht
= I, + 1 O + 20O (E)} (B

Also by repeated differentiation of the differential
equation

y®(&) + 2piy¥(&) = Aiy(€)
+ BiyW(&) + Ciy (&) + Dy (&) (B.2)

where bounds for A4;, B;, C;, and D; can readily be com-
puted in terms of bounds for p, g, f and their first and
second derivatives.

Formulae (2.3) and (2.4) can now be applied to write
the right-hand side of equation (3.2) in terms of y;_y, y;
and y;,,. Substituting the result in equation (3.1) leads
to a difference equation which is satisfied exactly by the
desired solution of the differential equation, and which
has been obtained by perturbing the difference equation
obtained by finite-difference approximation. A method
similar to that described above can be used to construct
perturbed forms of the finite-difference approximations
to the initial or boundary conditions which are satisfied
exactly by the desired solution of the differential equa-
tion.

Let the matrix form of the finite-difference equations
be

Mz = b, (3.3)

then the matrix form of the perturbed equations satisfied
by the values of the exact solution at the mesh points
can be written

M+R+S)y=>b+c

where R is the matrix constructed from the «; and o;,
S the matrix constructed from the B; and §; (so that it
has 1/h as a scalar multiplier), and ¢ the vector constructed
from y; and v;.

(3.4)

The vector y-z satisfies

M+R+8)(y—2=c—R+S8)z @G5
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whence

I+MI'R+8)(y—2)=M"'c— R+ 9)2).
(3.6)

Taking norms in equation (3.6) gives the result
1221
b=l < TR s
{llel] + 1IRI =] + (IS} 3.7)
[[M=][ [|R + S]] < 1.

provided

Equation (3.7) is in a form suitable for the calculation
of error bounds except for the term ||Sz||. This can be
replaced by ||S|| ||z||; however this is in general a poor
upper bound. A better bound can be found by a more
careful analysis of S. This is easiest when the boundary
conditions on equation (2.1) have the form y(a) = y(b)
= 0. In this case the ith row of Sz is (using equations
(3.1), (3.2), (2.3), and (2.4))

3
2_4{AiBi(§1) + B;3;(&§)) + CiBi(€r) + Didi(€)}

(Zit1 —2zi—) = Gi(zi41 — zi—1)- (3.8)

If the mesh is chosen so that z, corresponds to y(a), and

Z,11 to y(b), then Sz may be written (using the boundary
conditions)

Gl O 1 Z4
Gz —1 0 1 Zy
Sz = : —-1 0 1 -
G, -1 0 Z,
— GHz. (3.9)

ISz < |G 1] || Hz]] (3.10)

where all quantities on the right-hand side of this equa-
tion can be computed. Equation (3.10) provides a much
smaller bound for ||Sz|| in general. This is exemplified
in Table 5.1.

4. Bounds for the norm of the inverse matrix

To carry out the error analysis described in Section 3
it is necessary to know a bound for [[M~!||. In this
section two possible methods for finding such a bound
are noted. One method is appropriate for initial-value
problems, while the second is more suitable for boundary-
value problems. The required bound for ||[M~!|| is
sought as a bound for ||z||/||8]| over all non zero
vectors b.

Consider first the solution of equation (2.1) with given
initial conditions. If the standard finite-difference
approximations are made, then M is the lower-triangular
matrix
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- _
. g0

—lta

1 —hp2 =2+ hq, 14 hp,/2

L—hpeu_y/2 —24+hqu_1y 1+ hpu—1)/2- |
@.1)

In this case equation (3.3) can readily be solved by a
process of forward substitution. A bound for the
[[M~'|| is found by solving a related problem whose
solutions dominate those of equation (3.3).

By collecting terms and introducing the forward
differences operator A the equation determining z
becomes

i+1

(1 ~}—}%) Az, — (l —}%) Az, +hq,z;=b;. (4.2)

Taking moduli in this equation, and inserting a bound
for |b,], gives

(- < o5

+ W gil|zi| + 18] (4.3)

Also 120 < 118]] 1
hqq
[z < [18l] (1 +75°), T @.4)
i—1
and 2l < Jaol + 582 |

The required dominant is now readily found for, by
equation (4.4), it is sufficient for it to have forward
differences which bound the moduli of the forward
differences of z; provided its initial value and initial
forward difference bound |zo| and |Azs|. The bounds
for the forward differences of z; can be found from
equation (4.3) provided h|p;]/2 <1 fori=1,2, ....,
Zi
, for ] for ¢
Z*, where Z* satisfies the difference equation

n— 1. A suitable dominant for for arbitrary b is

(1 — hl“pz;l) A — 2+ gz

+ (1 +h I’;"’)Z,-*_l =1,

i=12...,n—1, 4.5)
and the initial conditions
ZE =1,

AZ$ =14 h2’2q°| “.8)
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As the Z;* are monotonically increasing with 7 it follows
that

[|M-|| < Zr 4.7)

An explicit bound can be found by solving the differ-
ence equation with constant coefficients

hP hP
(1—3)W,p42+mgm4+(r% YW =1,
(4.8)
with Wy = 1,
2Q
AWy =1+ 12 (4.9)

and P and Q are numbers such that
i=0,1, n—1

i=1,2,...,n— 1.

|q,| = 9

and |pi| < P,

. hP .
It is necessary that — << 1. In this case

2

M| < Z} < W, (4.10)

If boundary conditions are imposed on equation (2.1)
then the matrix M is no longer triangular. The set of
linear equations can be solved by factorizing M into an
upper and a lower-triangular matrix, and carrying out
a forward and back substitution. Specifically let

M=+ L) D+ U) @.11)

where D is a diagonal matrix, and L and U are matrices
(respectively lower and upper-triangular) with zeros on
the diagonal. Then the solution of (3.3) is obtained by
solving the equations

(I + Lyr — b, (4.12a)
and

(D + U)z —r. (4.12b)

To obtain a bound for ||[M ~!|| the set of equations

(I —|L|)(|D| — |U|)Z* = e (4.13)

is solved where e is the vector each of whose elements is
1, and where the modulus signs indicate that the elements
of the matrices concerned are to be replaced by their

moduli. The desired result is that
M| < 2] (4.14)
The proof is straightforward. From equation (4.12a)
j—1
yi="b; — __Zl Ly, }
i 4.15)
whence  [3i] < 161l + % 1[5 |
Let (I — |L])y* = [|b][e, (4.16)
then from equations (4.15) and (4.16)
> |y (4.17)
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Now from equation (4.12b)

Zi = d {yl

whence, using equation (4.17),

l * n .
2l < gy oF 4 2 Jul 12}

3wy )

Jj=id1

Now let
(ID| — [UDW = y*,

then W,> z

(4.18)
(4.19)

for any vector b. Also (%/L) = Z* so that (4.14)
follows from (4.19). 121

The author was informed about this method for
calculating a bound for ||M ~!|| by Mr. Sidney Michael-
son (unpublished). The above analysis has a close
connection with a method due to Milne (Milne (1949))
which is also reported in Bodewig (1959). The method
is particularly valuable for matrices obtained by making
finite-difference approximations to boundary-value prob-
lems, because it gives the exact value of ||[M~!|| for an
important class of these problems.

If the above method is to give the exact value of
[|[M~1]| then

+ I+ L)Y(D+ U)=— |L))(|D| —|U|). (4.20)

In this case either M or —M is monotonic in the sense
of Collatz (1960), p. 42. In the same reference p. 178,
Collatz gives an error calculation in which the fact that
M is monotone is used essentially to find a bound for
[[M-!|. His method also requires him to know
bounds for the solution of the differential equation, and
in his numerical example he is forced to substitute values
from the solution of the finite-difference equations to
obtain ‘“‘approximate’ bounds.

5. An example

In this section the results of the previous sections are
exemplified by applying them to the Numerov difference
approximation to the differential equation

YO (14 Xy = — (5.1)
subject to the boundary conditions
y(=1) =y(1) =0. (5.2

The exact solution of equation (5.1) also satisfies

m(1 +x, 1)) ( S5h2(1 +x2))

(14—

n (1 +h2(1+x 1))

h

where x;,_; < & < x;+,. The Numerov difference
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approximation is obtained by ignoring the term A®y©®

(&)
By repeated differentiation of equation (5.1) it is found
that

¥© (&) = A, (§)y(§) + 42(E)yV(§) + 43(8), (5.4)
where 4,(§) = (1 + £%)° — 14(1 + £) — 16£2,

A,(§) =12¢(0 + &),

A3(H) = (1 + ) — 12

The exact difference equation can now be constructed
by the procedure described in Section 3. The bounds
for Ay, A5, and A3, in —1 < x < 1 are

|[4i] < 36, |4a] < 24, |45] < 8;

also (1 + x2) < 2 in this range. Using these bounds
and equations (2.3) and (2.4) one finds

hS 3 + 24h + 924
@ IRl <2 —71—p@

1 K1
2h 10 1 — h2/4°
© ||| < 2|lq]],

hS 16k + h?
@ llell < 220 T— 37~

() 6]l <

For this example it is found by calculation that the
triangular factors satisfy equation (4.20) so that the
second procedure of Section 4 actually gives the exact
value for ||[M~!||. In fact because of the special form
of the right-hand side in this example

|[M] = A2 |[z]]. (5.5)

Table 5.1 gives a list of the numerical values found for

the quantities involved in evaluating ||y — z|| for three
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