Stationary points of quadratic functions

previous section. Since the matrix [ZAQ 31] in (4) is

symmetric, it is economical to use the square-root
method. The number of multiplications is given
approximately by

wo=dm 4 n)d = 31 + «)3nd.

The coefficient of »n? as a function of « is shown by the
line labelled (2) in Fig. 1. For « between 0 and 0-5
the amount of computation in the two processes is very
nearly the same, but with « in the range 0-5 to 1-0 the
procedure given in the previous section becomes
considerably more efficient.

A generalized alternating direction method of Douglas—Rachford
type for solving the biharmonic equation

By G. Fairweather and A. R. Mitchell *

Alternating direction methods of Douglas-Rachford type are considered as a means of solving

the biharmonic equation.

The family of methods obtained contains the Conte-Dames formula as a special case.

Introduction

In the problem of determining the elastic buckling loads
of flat plates under partial edge compression, the plate
stress u is given by the biharmonic equation

Qu Qtu d*u

et T 2y Ty = O )

It is convenient to consider the square homogeneous

plate (0 < x < 1, 0 < y < 1) supported along its edges
and buckled by moments along two opposite plate edges.
This leads to the boundary-value problem consisting of
(1) together with the boundary conditions

A%y
_5;2_0 atx=0,1 O<y<]
u=20 aty=0,1 0O<x<]l)

) |
g—yl;=f1(x) aty=0 (O<x<l f@)

32
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aty=1. O<x<.

Several attempts have been made to solve this
boundary-value problem using finite differences. Ori-
ginally, relaxation methods were used, to be followed
by more sophisticated methods such as over-relaxation
by White (1963) and Tee (1963), and an alternating-
direction method by Conte and Dames (1958).

It is the purpose of the present paper to consider
alternating direction methods of the Douglas—Rachford
(1956) type as a means of solving the biharmonic
equation, and to obtain a generalized version of the
method used by Conte and Dames.

The Conte Dames (C.D.) method
A square mesh is superimposed over the region
0O<x<1, 0<y< 1) with the mesh size & = 1/N,
where N(> 3) is an integer. The C.D. method for
solving (1) is a double-sweep iterative process given by
=l O30 29
D = D — (Bl — S8, (> 0)
where 4%, is an initial approximation to « at the node
x = ih, y = jh, 8,, 6, denote the usual central difference
operators in the x and y directions, respectively, and r
is an iteration parameter chosen to accelerate con-
vergence. If u{"}¥ is eliminated, equations (3) become
Ui+ = ) = p(§hyr+ 1) 4 28282
+ Sty — p2848% D — ), (4)
where the lower suffices i, j have been omitted.
The C.D. formulae (3) constitute a convergent iterative
method for solving the biharmonic equation similar to

the Douglas-Rachford alternating-direction method for
solving Laplace’s equation.

The generalized C.D. formulae
A generalized form of (3) is
(@ + a;8 + a,8Du"H = (by + b, & + b,8% )
+ 385 + by + bs BB | 5
uH + (co + ¢,6% + 0u |
o + dyB2 + dy3u®. |

This reduces to the C.D. formulae (3) if the coefficients
take the values ay=by= —cy =1, a, =b; = b;
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Biharmonic equation

=bi=c=dy=d =0,a,= — b, = — }bs = — ¢,
= —d, =r. If u»+Hy is eliminated in (5), the result
(ap + 0185- + a,8})(co + ¢,82 + ¢,8Du+ D

= [(ap + a,8% + a,8})(dy + d,8% + d,8})

— (b + b,82 + b,8% + 5382

+ b48y + bs8387)Jum (6)
is obtained. The coefficients in (6) are now adjusted so
that if the process converges, that is "+ = y =y,
for n sufficiently large, then (6) reduces to
{o)(8% + 2828] + &) + 2,878% + 38382

+ agdu =0, ()

which is a fourth-order finite-difference replacement of
the biharmonic equation for all values of the parameters

oy, o, a3, and ay. This comes about when the coeffi-
cients in (5) and (7) satisfy the relations

o o
b():ao(do—Co),bl:———d3, b2=——rx2+al,
a a

by = a,(dy — ¢o), by = ay)(dy — ¢,) + o,

a
bs = ——a;+20;,dy — ¢, = — — a3,
a, a,
1 1
dy— = ——ay=——"ay
2= 6 2, % o %

In fact using these relations between the coefficients,

(6) becomes

(@ag + a,82 + a,8%)(co + ¢, 8% + ¢, 8)u"=b

= [(ap + a,8% + a,8%)(co + ¢,62 + ¢,89)

— {an(8% + 25253 + )

+ 28288 + 238302 + 0y 8385} Ju™. ®)
In order to simplify the analysis in what follows and

yet to retain the essential character of the generalization,

we take oy = 16R, ay = a3 =0, a4 = 1 — v, together

with ¢, =dy =0, ay=c¢cy=16R, and a, =c, =1,

where R and y are adjustable parameters. With these

simplifications, (8) becomes

(16R + 8)(16R + &Hut= 1

= [(16R + 83)(16R + &%) — 16R(8% + 25282 + &%)

— (1 — )88, ®

and (5) reduces to

(16R + &})utn+b

= (— 256R? 4 16yR8% + 32R8282)u™

D 4 (16R + dHun+D = (y8Hu». (10)
Since «, = a3 = 0, it can be seen that the sixth-order
differences disappear in (7) and so the generalized
method described by (9) or (10) converges to the solution

of a difference approximation of the biharmonic equation
which agrees with the standard difference form

(8% 428282 + 8)u =0,
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except for a term involving eighth differences. This
term will in general have a negligible effect on truncation
whereas its inclusion can be used to accelerate the
convergence of the alternating-direction method. The
term, of course, disappears when ¢ = 1 and (9) becomes
(4) with R = L.

Convergence of the iterative procedure
The error ") is defined by
€ = Ul — u; s
where u; ; is the solution of
{16R(8% + 28282 + &%) + (1 — y)8383u; ; = 0. (11)

The error growth is governed by equation (9) with u
replaced by e, together with homogeneous boundary
conditions. If the error is expanded in the form

€ = pysin mpx;sinmqy; (p,q=12,..,N—1)

and substituted into (9) with u replaced by e, it follows
that
R?> — 2Rs2s2 + yspsg

Pt :
A= T TR HRE S 1Y

. pmh . .
where s, and s, are sin 5 and sin =, respectively.

To facilitate the examination of the amplification
factor (12), we introduce A, where

R? — 2Rs2s: + yspss

qmh
2

A= R 2RIE T st (13)
Since sS4+ sh > 25382,
it follows that 1A > |A|
for all p and g. Put z = s2s3 and (13) becomes
< R — 2R 2
AR, y,z) = kv (14)

‘R? + 2Rz + z%°
In what follows, the convergence of the process will

always be based on A. Since |A| < [A|, the actual
convergence will generally be better than the figure
quoted.

Optimum convergence factor

We now examine (14) with R >0, 0 < z; < z < 2,
v w
2N 2N°
typical graph of A against z for given R and y is illus-

and y < 1, where z; = sin* and z, = cos* A

trated in Fig. 1. This curve has a minimum at z = ;—+ TR
where the value of A is
1 —y
——(=G 15¢
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Biharmonic equation

and A tends to y as z tends to infinity. The values of A

at the limits of z are

R? — 2Rz + yz}
R? + 2R21 + Z%
R? — 2Rz, + vz}
R2 —!" 2RZZ + Z%

(=6 (15a)

and = G,) (15b)
respectively. Depending on the values of R and y, the
minimum of the curve may lie inside or outside the per-
missible range of values of z. If the minimum lies out-
side, the maximum modulus value of z is either |G,| or
|G,|. If the minimum lies inside, the maximum modulus
value is |G|, |G,|, or —Gj.

In fact it can be shown after some manipulation that
if y, is given by

32 cos? /N
dacosta/N vy
(1 + cos? w/N)? (ve + )AL — o), (16)
the convergence factors (maximum modulus values of X)
are:

D) 1=>y>vy
|G, if 0 < R< R,
|G| if R, <R
where

R = #[{(1 + 9z + 22)* + 32(1 + y)zizp}'2
— (1 =)z, + 2))]
@ ye>y
|G,| if 0 < R< R,
|G3] if Ry, < R< R,
|G| if R, <R,

where
_2—(y 330 — )2

Ry ==L TV,

(y+1
and

24 (y+ ) — 2
Re = &+ 1) g

In order to obtain the optimum convergence factor for
a given value of N, it is necessary to find the values of
y and R which will minimize the maximum modulus
values of A. In fact the minimum occurs where Y = y.
and R= R, = R, = R,. This leads to an optimum
1 — Ye
34y

(Ry > Ry).

convergence factor of Thus for any value of N,

y lies in the range
0<y.<y<l

where vy, is given by (16). The convergence factor is
worst when y = 1 and best when y = vy,.

The case of 100 internal nodes (N = 10) is illustrated
in Table 1. As y decreases from 1 (the C.D. value) to
0-24 (v, correct to two places), the convergence factor
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2

Fig. 1.

improves from 0-90 to 0-23, both values correct to two
places. It should be noted, however, that a decrease in
y leads to a decrease in R and an increase in (1 — y),
and so the eighth-order difference term in (11) becomes
relatively more important. This will have little effect on
the accuracy of the limiting solution of the iterative
process, except possibly in circumstances when N is
very large and y has a value close to y..

Final remarks

Conte and Dames, of course, did not advocate that R
should be kept constant during iterations. In fact, they
obtained a set of iteration parameters Ry(k = 1,2, .. .n)
which for N = 10, reduced the error by approximately
10~¢ for 18 double sweeps over the grid.

In comparison it can be seen from Table 1 that the
optimum convergence factor for the method outlined in
the present paper is 0-235 when N = 10, which reduces
the error by approximately 106 after 10 double sweeps,
or by approximately 10~1! after 18 double sweeps.
Alternatively, an error reduction of approximately 10—°
after 18 double sweeps can be obtained by choosing
y = 0-5, which from Table 1 leads to a convergence

Table 1. (N = 10)

v e | R | e

1 0 0-02387 0-9045
0-875 0-125 0-01261 0-8190
0-75 0-25 0-007447 0-7187
0-50 0-50 0-003489 0-4874
0-25 0-75 i 0-001973 0-2440
0-2397 0-7603 i 0-001931 0-2347
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Biharmonic equation

factor of 0-49. Also there is no reason why the con-
vergence of the present method should not be improved
by making use of a variable parameter R. This has been
employed successfully by several workers in the solu-
tion of Laplace’s equation (see Varga, 1962) and, of
course, by Conte and Dames in solving the biharmonic
equation.

The original Douglas—Rachford method for solving
equations of the Laplace type required a tridiagonal
system of equations to be solved twice for each double
sweep. The method described by (10) with the appro-
priate coefficients requires a quidiagonal system of
equations to be solved twice for each double sweep.
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