
What is the use of operating systems?

By P. L. Cloot*

Before long nearly all computer users will be using operating systems with their equipment. These
operating systems consist of both language processors and supervisor programs, and this paper
sets out to explain in simple terms why the need for such systems has arisen.

The aim of this paper is to show that computer operating
systems are, from the user's point of view, not only in-
evitable but desirable. It is not intended to be a tech-
nical account of operating systems or of particular ways
of implementing them, as enough papers and manuals
are already available on the subject. The proceedings of
the Edinburgh Joint Computer Conference (1964) give a
broad survey of users' views on computers, and a more
specialized book has recently been published (Wegner,
1964) which represents current thinking in this country on
operating systems. It is hoped rather that this paper will
serve as an introduction to the subject for those who need
to know what all the fuss is about.

Another area it is not proposed to tackle is that con-
cerning the physical equipment actually used to imple-
ment any particular machine system. Endless arguments
can be, and often are, carried on about the relative merits
of various forms of "hardware." All the user is con-
cerned about is how the overall system behaves, and
whether the hardware the designers chose to implement
can be manufactured punctually to be reliable at a
reasonable price. (It is blithely assumed in saying this
that the user is confident of his ability to make effective
use of the equipment if it is installed in working order on
time! This raises a whole host of other problems, which
again are not the subject of this paper.)

Problems in using a computer
In order to use a computer it is necessary to have a

language for communicating intelligence to it and a
means of ensuring that a program written in this language
functions as intended. Let us consider programming
languages and program testing, and then see what other
problems in using a computer arise from them.

Programming languages
It is generally recognized, except in a few last pockets

of resistance, that there is something to be gained from
the use of languages of higher level than those of the com-
puters themselves. The programmer's time saved in
writing and correcting a program far outweighs any
additional computer time used in language translation.
If, in addition, the resulting reduction in program testing
time is taken into account, there may even be a reduction
in total computer time used. In fairness to those
remaining pockets of machine-language programmers,

• IBM United Kingdom Limited, Education Centre, 15-17 Lodge

the blame should probably be placed on the computer
designers, since they have either failed to produce ade-
quate language processors or have failed to enlighten the
users as to their advantages. It is disturbing to find
coming from one of our leading mathematical labora-
tories such an understatement as this: "A computer
which obeys, say, five instructions per microsecond is
probably going to consume programs faster than any
reasonable team of programmers can produce them, if
they have to work in machine code." (Barron and
Hartley, 1964.) It is, of course, unfair to take this
quotation away from its context, and the authors do go
on to say later: "It is time that software (operating sys-
tems as well as compilers) and hardware were treated as
equal contributors to the total problem-solving objective
of computers, . . ." Even in this country the ratio of the
cost of programmers' time to the cost of computer time is
increasing, and users will eventually be forced to realize
that it may pay them to improve the efficiency of their
staff, if necessary at the expense of computer time. We
may conclude that high-level languages, with their pro-
cessors and their diagnostics, are here to stay.

It is also necessary to realize that a language processor,
which is a complicated program to translate a high-level
language into machine language, must reach a certain
level of efficiency, in spite of the preceding comments on
the greater importance of the efficient- use of program-
mers. In the past, some processors have not done this,
and in particular have not had adequate diagnostic
facilities built into them. Errors in programs can be
classified into two groups: clerical errors, where the
programmer has instructed the machine to do something
which is physically impossible; and logical errors, where
the machine has been asked to do something which is
valid, but not what the man with the problem intended.
In the first group the computer designer has an obligation
to learn from users' experience what errors are made and
to ensure that these are diagnosed by the processor. (To
take an obvious example it is inadequate for a processor
to desist from translation when it has found a single error
in a program: it should attempt to find as many as
possible each time it is used.) The second group is no
concern of the processor but comes in .the area of the
external system design and control. The designer can
still help here by means of aids to dynamic program
testing.

Road, London, N. W.$.

249

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/7/4/249/354078 by guest on 19 April 2024



Operating systems

Program testing
In the best planned installations, even those expecting

to do entirely routine commercial work, programs do
have to be tested occasionally. If an organization makes
no changes in its requirements for too long, it is probably
an indication that its management is moribund. And
even the best of managers make mistakes or change their
minds once in a while, so modifications will undoubtedly
be required sooner or later.

Developing, modifying and testing programs involves
the use of these complicated language processors for
short periods, so even the installations with a large,
stable workload are bound to have a variety of what
amount to short, complicated jobs to run. For installa-
tions where program development is the order of the day,
the problem of handling a large number of very short jobs
rapidly becomes acute.

As already mentioned the effectiveness of the individual
test runs can be greatly increased by an efficient dynamic
testing system which enables a programmer to perform
dumps of selected quantities at selected stages in the
execution of a program, to help deduce where his logical
errors lie. This again is an area in which the designer
can profit greatly from users' feedback in deciding what
form of tracing or dumping facilities are going to be most
helpful.

While discussing short jobs, it is probably appropriate
to remember that there are many new short jobs which
would arise spontaneously, if an adequate means of
handling them were available. This trend is desirable,
as long as these new jobs are economically worth while.
It might be as well just to bear in mind Parkinson's law
about the expansion of work to occupy the computer time
available.

Supervisor programs
Having established that all installations will have some

short jobs to process, and many will find that perhaps a
half of their total running time is composed of short jobs,
the question of job set-up time and transition between
jobs becomes important. This is again an area where the
designer has an obligation to help, and most users are
beginning to accept that they will profit by allowing the
computer to control the transition between jobs. This is
done by means of a "supervisor program," a part of
which will always reside in the high-speed store of the
machine. By the use of such programs, a stack of jobs
can be given to the machine, separated by control infor-
mation for the supervisor to recognize what type of job
follows. The time saved overall should more than com-
pensate for the space occupied by the supervisor in all
but exceptional circumstances. The supervisor program
in practice has many other additional functions to per-
form, and these will be referred to later.

The use of a supervisor implies that the programmer is
no longer allowed anywhere near the operator's console,
and some of the old school may resent this. However,
forcing programmers to do their thinking away from the

machine can do nothing but good, and may even en-
courage them to look ahead and anticipate problems
which may arise in testing. No one these days would
dream of installing a complete computer system without
first doing a comprehensive systems analysis and antici-
pating the problems which its installation might cause.
In the same way, but at a much lower level, no program-
mer should be writing a program without having thought
of the implications and possible difficulties in the imple-
mentation of his program.

Input and output
However sophisticated the insides of computers may

become, with their thin-films and their nanoseconds, a
system is only of use if it can communicate with the out-
side world. It is in the area of input and output that
most of our future problems will lie, since a significant
error-rate is inevitable where moving parts are concerned.
This must be catered for by not only detecting errors, but
also, wherever possible, by allowing the system to carry
on correctly in spite of them. This may involve auto-
matic repetition of a faulty operation, or even the auto-
matic amputation of a faulty device and its replacement
by another. Such operations should be well within the
capabilities of the supervisor programs of today.

Another function of the supervisor is the interleaving
of the use that a variety of input and output devices
makes of the central processing unit. Mechanical
devices are necessarily slow by comparison with the
central processor, and the scheduling of the use that
autonomous input-output channels make of it is quite a
complicated procedure, especially when the need to
handle errors is taken into account. To cope with this
situation it is desirable that all input and output opera-
tions are handled by the same set of routines, irrespective
of the job being done, so again this becomes a function
of the supervisor. An extension of this technique, some-
times called "multi-programming" or "time-sharing,"
allows several programs to reside in a computer simul-
taneously, each carrying on independent input-output
operations while competing for control of the central
processor. Some of the ways in which the hardware
can help the supervisor in such operations will be men-
tioned in a later section.

The discussions so far have been suggesting that there
is a need for both language processors (and other special-
ized programs) and for a supervisor capable of con-
trolling all the component processors of the system, and
of handling all input and output. These two together are
commonly referred to as an "Operating System." This
leads us to the next question, which concerns the overall
size of any computer. The implementation of an
operating system presupposes a certain minimum size of
machine, since its functions are bound to require some
significant computing power. It has long been accepted
that the cost of a job goes down as the size of the com-
puter goes up, provided the machine is fully-loaded. But
whether it is desirable to use as large a machine as possible
depends, from the user's point of view, on whether he gets

250

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/7/4/249/354078 by guest on 19 April 2024



Operating systems

better value for money as a result. The penalty to the
individual user for the use of a large machine in the past
has been a decrease in its accessibility. With the advent
of adequate operating systems this should no longer
apply, since it is now possible to ask the machine to
handle many jobs concurrently, and, for example, a short
test can be allowed to interrupt a long job, have exclusive
use of the machine, and then allow the interrupted job to
continue as though nothing had happened when it has
finished. Add to this the value to the user of having
a machine capable of using powerful language processors
even for small jobs, and it seems that the reasons for
using as large a computer as possible are today stronger
than ever.

Specialized application areas
In addition to the more conventional application areas

of commercial and technical computing there are some
specialized areas which require highly specialized systems
to control them. One such area is that of data trans-
mission with its problems of message assembly, error
handling, on-line control from remote locations and so
on. Another area is that of process control, with its
problems of analogue-digital conversion, mathematical
model-building, 24-hour service and the frightening
possibilities of the immediate physical consequences of
errors.

In his opening address to the Edinburgh Conference
Sir Edward Playfair suggested that these might present
another reason for not using one big computer (Playfair,
1964): "Are we sure that we shall in due course want to
move things and to produce statistics from the same cen-
tral processor? The requirements of complication and
reliability are different." This argument has certainly
been valid in the past, and may well still be so at this
point in time, but in due course it ought to lose its validity
if the computer is to be exploited to the full. As long as
we regard a manufacturing process as quite separate from
control of the stocks required in the process, which again
are separate from the sales orders for the product, then
we are justified in using separate techniques for pro-
cessing each. But once we mechanize the data proces-
sing in these areas, or in the areas of accounting, payroll,
work-scheduling, product design or any other such
activities, we have a potential means of applying better
management control to our organization. Computers
are already being used as tools of management in all of
these areas separately, but not many organizations have
integrated their purchasing with their stock control or
their payroll with their production recording, in spite of
the obvious connections.

Once all the significant aspects of an organization's
operations have been mechanized, there exists in the
computer system a model of that organization, and,
provided management know what questions to ask, and
adequate information-retrieval techniques have been de-
veloped, then the computer can become a significant con-
tributor to the overall control function of management.
Further than this, one of the most important activities of

management is prediction, and the very fact that a model
of the significant aspects of the organization exists in-
troduces the possibility of simulation, and makes
economic tests of various management policies a real one.

Extensive activity in these areas is clearly some way off
yet, but it does mean that ultimately it may well be
desirable to perform many widely different types of
operation on compatible computers. The problems of
reliability and complication may well have been different
for different classes of work in the past, but the differences
are diminishing.

Probably by now any reader of this paper who is con-
cerned with research, development or technical design
problems is beginning to feel neglected. But this is not
really so, as even his problems are at best part computa-
tion, part data processing. He will certainly express his
problems in some language such as ALGOL or FOR-
TRAN (let us not worry about trivial diversions as to
which is better; neither is perfect, and most problems can
be expressed adequately in either), so his computer will
have to handle a great deal of language translation as
well as technical computation. In any case, it is prob-
ably worth investigating how many designers working in
industry produce what they think are new designs, when
an adequate information storage and retrieval system
would enable them to find a similar design produced three
years before. Even in situations where designers have no
illusions about their work being original, it is at present
less trouble to start again than to search in hope of finding
anything useful in history.

It appears that all potential computer users, irrespec-
tive of their class of problem, may well find themselves
using what amounts basically to identical equipment,
both in terms of hardware and of "software," as the
operating system and its components are sometimes
called. Obviously one of the reasons for this is to make
it possible for manufacturers to produce enough com-
puters to keep up with the demand. Another one, less
immediately obvious, is in the area of real-time applica-
tions, where a second machine which is necessary for
reliability need no longer be anything like the same size
as the first, as long as the same programs can run on
either. For this universal approach to be acceptable
such computers must be extremely flexible at the hard-
ware level in both size and power. However, as time
goes on this burden of flexibility becomes more and more
one of the functions of an operating system, and some of
these functions will now be considered.

The functions of an operating system
The functions which an operating system must be able

to handle to tackle all the areas of activity which have
been discussed are as follows:

1. Automatic handling of a variety of processors.
These must include standard language processors, other
standard routines such as sorting programs and programs
for setting up addressing structures for direct-access
storage devices. In addition it must be possible for an

J251

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/7/4/249/354078 by guest on 19 April 2024



Operating systems

installation to include any processor of its own, and
arrange for suitable additional control information to be
recognized. The supervisor must be able to handle the
transition between processors, and also carry out any
accounting functions required in installation manage-
ment.

2. Identification of input and output units. When
programs are written in high-level languages it is desir-
able to avoid specifying the physical form of an input or
output device within the program. The devices available
in one installation may change; the number of data
channels available may change; it may be required to run
programs at other installations; library routines used in
many installations must be easily adaptable to the equip-
ment available. To cope with these situations, the super-
visor must be able to establish correspondence, at the
time a job is run, between the symbolic device names used
in the program and the physical units actually available.
It is desirable that these names should be independent of
the types of devices available, so that a job may be run
equally easily using for data files magnetic tapes, core
storage, magnetic discs, or whatever else that may be
available.

3. Control of input and output operations. To enable
several autonomous input-output channels to operate
concurrently the initiation and termination of such
operations must be controlled by a program common to
all jobs. This Input-Output Control System must be
able to handle:

(a) error detection and error recovery procedures;
(b) data-transmission and process-control terminals;
(c) the sharing of the central processor by several

input-output channels;
{d) the sharing of the central processor by several

programs (when this can be justified).
The error control should be able to handle two classes of
error: hardware conditions (with automatic error logging
for the engineers' benefit), and programming conditions,
such as incorrect labelling of files, or end-of-reel condi-
tions on tape units.

4. Operating System Editing. An operating system
which set out to be all things to all men would be so cum-
bersome that no one would use it. It is therefore essen-
tial that an editing facility be provided, so that the
operating system may be modified to contain only those
features needed by a particular user. Further, the editor
program will be needed periodically as the requirements
of an installation change, and as has already been said,
it is a bad sign if an installation's requirements do not
change for too long.

What price the operating system?
All these facilities cannot be provided at no cost, so it

is as well to consider what their provision does cost.
The programming effort the designer must make is
inescapable, and should be just as much a part of his
investment in product design as the calculations that go

into his electronic circuits. It is no longer acceptable for
him to regard the provision of software as a luxury to be
added if possible at a later stage, and already the more
shrewd purchasers of computer systems are looking at the
software just as hard as the hardware.

The other factor in the cost of providing operating
systems is the one most often complained of, the amount
of high-speed storage they occupy. This complaint on
the part of the user is as groundless as it is understand-
able. If only the designers would exclude the storage
occupied by the system from the amount they offer the
user, the problem would not arise. Obviously the
amount of storage occupied by the system will vary, but
the amount offered should be reduced at least by the
minimum the operating system may require.

How the hardware can help
If operating systems are to be implemented effectively,

their functions must be appreciated at the time when the
hardware is designed. Features necessary to make an
operating system easy to implement are these:

1. Automatic interruption of the central processor.
The hardware must be able to cause an interruption
of the program currently being executed, irrespec-
tive of what is being done, and without the know-
ledge of the writer of the interrupted program. The
events which require this are, for example, the com-
pletion of an input or output operation, the dis-
covery of an error, or a request from a remote
terminal for servicing. Such interruption facilities
bring with them many detailed problems which
must be considered, such as the method of deter-
mining which interruption should have priority if
two are waiting to be processed.

2. Storage protection. It must be possible to prevent
a programmer from, interfering with parts of the
machine which are not concerned with his program,
and especially with parts where the operating sys-
tem resides. It must be possible for the system
itself to override these restrictions, while any
attempt to do so by a user should cause an interrup-
tion as described in item 1. It is helpful if it pro-
duces a message saying what he has done wrong,
before returning control to the operating system to
terminate the job. The programmer should also be
able to specify his own protected areas.

3. Error detection. Errors of all sorts, whether in-
valid data input, machine errors or program errors
must be detected reliably, and correction or by-pass
action undertaken, so that the running of the system
is not interrupted unnecessarily. If the machine
can assist the maintenance engineer by telling him
where it feels poorly, so much the better. A great
deal can now be done in this direction with built-in
hardware diagnostic programs, which automatically
check the correct functioning of the various com-
ponents of a system. It is an interesting paradox
that the importance of error-checking increases as

252

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/7/4/249/354078 by guest on 19 April 2024



Operating systems

the readability of equipment increases. Whereas
there was a time when no one really expected com-
puters to give the right answers all the time, we now
have a right to expect that, if we get an answer at all,
it can be relied upon.

4. Relocation. Languages which take no account of
the machine configuration, and which also allow
pieces of program which have been written and
translated on separate occasions to be run together,
make necessary an efficient means of relocation.
This is particularly important for programs which
exceed the size of the available machine and have to
be run in several phases. Sections of coding may
be executed from any part of the store, and the
programmer cannot (and should not) know where.
So the operating system—or more particularly the
loader—must be able to load different sections of a
program into whatever locations are required.
This function has until recently been performed
entirely by programming in the loader program—
but it is an operation in which the whole system can
be made much more efficient if the hardware and
software designers work together.

5. For a computer to be universally acceptable, its
machine-language instruction codes must be com-
mon throughout a complete range of size of com-
puter. It is no longer good enough to expect the
user to embark on a marathon re-programming
operation simply because his business has expanded
enough to require a larger computer. Compati-
bility at the level of high-level languages is a good
start, but compatibility at machine-language level
is even better. Clearly it will be worthwhile to
provide some optional features on some versions of
a machine: exclusively commercial users who are
very pleased with their powerful editing instructions
do not take kindly to having to subsidize standard
floating-point hardware for the benefit of their
technical friends. But now that the engineering
techniques available make it possible to modify the
computer instruction set very easily (by producing
an economic form of read-only storage system
similar in concept to the wired store in EDSAC 2
(Wilkes, Renwick and Wheeler, 1957) or the Man-
chester University slug store (Kilburn and Grims-
dale, 1960), the basic framework of a central pro-
cessing unit can be common to all application areas.
Another point not to be overlooked in this area is
historical compatibility. The designer cannot
penalize all his existing customers (who have prob-
ably provided a lot of his resources to develop new
computers!) by developing machines on which
existing programs will not run. So compatibility
between the past and the future is equally impor-
tant.

6. Standard interface for input and output. It
appears that coming generations of central pro-
cessing units can still vary, but that is nothing to the

variations we can expect in input-output devices.
We already have to cater for everything from a
Telex line at a few characters/sec, to a radio link at
hundreds of thousands. To do this, to make
allowance for visual and audio devices which are
the latest arrivals, and at the same time to allow for
future devices which have not yet been thought of,
the only possible solution is to define a "standard-
interface." As long as all devices conform to a
formal set of conditions, the input-output channels
on a computer can handle whatever devices may be
connected.

Many computers have, of recent years, had several of
the features just listed, but not until the recent announce-
ments of compatible computer ranges like the IBM
System/360 or the I.C.T. 1900 have systems become avail-
able which should have all these features simultaneously.
This does not mean, of course, that the end of the trail
has been reached, either for hardware or for software.
It is, rather, the beginning, since it should now be possible
to incorporate improvements in hardware without the
user even being aware of it.

It is not as easy to make changes in programming
languages without the user's knowledge as it is in hard-
ware, and although he may be excused for not wel-
coming changes, he must accept the fact that computer
languages are living languages just like spoken languages.
They must therefore develop to take account of changing
circumstances. Being defined more formally, we have
more control over when changes should take place, but
changes there must be. Once this is accepted, then the
use of an operating system does a great deal to simplify
such problems for the user.

The operating system and the user
Many of the operations which used to be regarded as

the proper sphere of the program, or more accurately, the
programmer, are, with machines at the stage of develop-
ment now reached, becoming functions of the hardware.
It was suggested recently that computers may reach the
stage one day where "efficient equipment 'is grown' to
replace those portions of the stored programs which have
been proved successful or optimized in some sense"
(Carr, 1964). This may well take some time, but already
some programmers fear that the removal of some of their
responsibilities is reducing their importance. This fear
is not justified if the programmer faces his real job, which
is to solve problems. He should be grateful for any
developments which allow him more freedom to devote
his time to improving his techniques in the area he should
be studying, namely problem solving.

Today's programmer must certainly accept the fact that
he no longer understands the purpose of many instruc-
tions which appear in a program he has written. But he
has long since given up expecting to understand how the
hardware of his computer functions, so why should he
worry about the software, especially as the line between
them is becoming so flexible? There will always be a

253

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/7/4/249/354078 by guest on 19 April 2024



Operating systems

need for skilled professional programmers to develop
operating systems and to push the available equipment to
the extreme limit of its capabilities, but their job is no
longer the same as that of the programmer. If a pro-
grammer (or a man-with-a-problem, as he should perhaps
be called) does feel the need to descend from his high-level
language to an assembly language he will find in that
language many features which are of very little use to
him. They are only there for the benefit of compiler-
writers and other professional programmers, and rightly
so, since they should be the most frequent users of such
levels of language. No argument is really as simple as
this, and there may well be situations in which a problem-
programmer needs detailed knowledge of his computer to
avoid making inefficient use of it. This will still matter
until computers are given away free in exchange for the
wrappers from six input-output devices, and that will not
be for a little while yet. The chances are that the best
systems-programmers will be discontented problem-

programmers, since they will be in the very best position
to appreciate the users' real needs.

As a direct result of the use of operating systems it is
possible economically to turn the man-with-a-problem
into a problem-programmer able to communicate easily
with an extremely powerful problem-solving tool. It may
appear at the moment that he is being kept further away
from his new tool by the operating system than his pre-
decessor was. This may be true, but he is nevertheless
as a user already getting better service from it, and all the
hardware and software are now available to make it
appear that each user has exclusive use of the system.
It was a most fitting conclusion to the Edinburgh Con-
ference that Dr. Wilkes should have shown this so clearly
in his demonstration of the use of the MIT Compatible
System. It is to be hoped that it will not take too long
for the economic situation to allow us to put man's time
at a higher premium than that of a machine.

References

BARRON, D. W., and HARTLEY, D. F. (1964). "The Influence of Automatic Programming on Machine Design", (UKAC report,
p. 21).

CARR, J. W. Ill (1964). "The Future of Programming and Programmers," The Computer Bulletin, Vol. 8, No. ], p. 9.
KILBURN, T., and GRIMSDALE, R. L. (1960). "A digital computer store with very short read time," Proc. I.E.E., Vol. 107B, p.567.
PLAYFAIR, Sir EDWARD (1964). "Computers and psychology," The Computer Journal, Vol. 7, p. 1.
UKAC report on 1964 Edinburgh Conference: "The Impact of Users' Needs on the Design of Data Processing Systems,"

Organized by the B.C.S., Brit.I.R.E. and I.E.E.
WEGNER, P.—Editor (1964). Introduction to System Programming. Academic Press, London.
WILKES, M. V., RENWICK, W., and WHEELER, D. J. (1957). "The design of the control unit of an electronic digital computer,"

Proc. I.E.E., Vol. 105, p. 121.

Book Review

Management Standards for Data Processing, by DICK H.
BRANDON, 1963; 404 pages. (London: D. Van Nostrand
Co. Ltd., 93s.)

In the past few years, the literature of Data Processing has
grown almost to a flood. Most of it has poured over the
specialist—analyst, programmer, engineer—dealing with
technical matters pertinent to his field. Much of the rest has
been directed at managements, explaining the intricacies of
the subject, and quieting their fears of its impact.

There has, however, been little of direct service to the
harassed D.P. executive whose daily lot it is to turn the eccen-
tricies of his wayward (if brilliant) brood into the targets
achieved and work accomplished that alone can justify the
existence of a computer installation. Mr. Brandon's book
will do much to ease his sufferings. Clearly the content has
been distilled from experience, and will prove to be an in-
valuable guide past the pits and traps which lie in wait for even
the most experienced of those who seek to set up an efficient,
productive, controlled data processing organization.

The theme of the book is Control, and its development is
concerned with the establishing of standards to which every

aspect of D.P. work can be subjected. To this end, all the
software components (and a little of the hardware) are
meticulously dissected, classified and coded, and their rela-
tionships with one another carefully defined. From the
skeleton thus exposed Mr. Brandon builds up a series of
suggested techniques by which the D.P. group can be started
on the right path, and kept from wandering too far from it.

Systems Analysis, Programming, Operations Performance
Evaluation are the major topics with which the book deals,
and each is stuffed with formulae and numerical information.
It would be unwise to apply the former to any specific case
(other than the originating one) as they stand, but they do
serve as a most useful starting point.

The essence of control in most organizations lies in adequate
(but minimal) documentation, and it is heartening to read
Mr. Brandon's constant iterations on this matter.

The book is specially recommended for systems analysts
and programmers. They would then look with less disfavour
upon the efforts of their superiors to guide their creative talents
into narrower channels.

C. E. HARDING

254

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/7/4/249/354078 by guest on 19 April 2024


