
Analytic differentiation using a syntax-directed compiler'

By Herbert Schorrf

The syntactic definition of a language used for analytic differentiation is presented in this paper.
The definition is given in Backus normal form. A translation is then added to this definition so
that the derivative of any algebraic expression written in the language can be obtained by using
the syntax-directed compiler developed by E. T. Irons.

The mathematically inelegant form of the derivatives obtained leads to changes in the original
syntactic definition of the language. The language is simultaneously extended in order to obtain:
(1) derivatives of higher order, (2) partial derivatives, (3) the derivatives of implicit functions and
(4) the derivatives of any number of functions at the same time.

The output of the compiler is the solution of the original problem and not an intermediate-
language program to be assembled and executed. This, it is felt, represents a new use of compilers.
Also, using Backus normal form rather than assembly language facilitates the programming,
checking out and changing of programs. The principle of extending the syntax of any language
in order to obtain a more efficient translation is discussed.

The method here presented for performing analytic
differentiation differs from other methods (J. W. Hanson
et al., 1962) in that it makes use, not of a special language
for symbol-manipulation, but instead, of the syntax-
directed compiler (E. T. Irons, 1963a).

This compiler requires (1) a specification in a modified
Backus normal form (BNF) of the source language and
(2) a specification of the translation process to be carried
out to convert from the source string to the object string.

Normally the object string is in some form of assembly
language, but in the present instance it is the derivative
of the source expression.

The Backus normal form specification

Algebraic expressions can be written using only
constants, numbers, independent variables, dependent
variables and the normal arithmetic operators. In
addition, for convenience, parentheses and certain
standard functions, e.g. sine and cosine, are introduced.
The BNF description of algebraic expressions using only
these last two functions is given in Table 1.

The language there defined is the simplest that can be
used to differentiate any algebraic expression. However,
because of the inelegance (mathematically) of the results
the table has to be extended to include more standard
functions and certain other modifications.

Obtaining derivatives

To obtain, via a syntax-directed compiler, the deri-
vative of an algebraic expression, a "translation" must
be added to the above BNF specification. The way of
providing such a translation is indicated in the literature
(Irons, 1963a, b).

In this case the particular translation to be combined
with the BNF specification can be obtained by using the

• First submitted September 1963
t Now with IBM, P.O. Box 218, Yorktown Heights, New York.

rules of differentiation and observing that the derivative
of any algebraic expression is formed from:

(1) the components (or sub-expressions) of an expres-
sion, and

(2) the derivatives of these expressions.
For example, the algebraic expression

A * B

has, as its sub-expressions A and B and its derivative is
given by

A * B' + B * A'

where A' and B' are the derivatives of A and B, respec-
tively.

Each sub-expression corresponds to an {expression)
in Table 1, and therefore two outputs, the original
expression and its derivative, must be associated with
each expression defined in that table.

For example, if C * x f 2 is an <expression> the two
outputs are (1) the original expression C * x \ 2 and

(2) its derivative 2 * C * x

whilst, for sin (C * x f 2) the outputs are
sin(C*x f 2) a n d 2 * C * x * c o s (C * x t 2).

The outputs can be obtained by adding the definition

to the formation rule

sin ((expression)) = :: (expression)

The adding of the appropriate definitions to the forma-
tion rules of Table 1 leads to Table 2.

The "diagramming" and formation sequence diagram
for the input y = l/x + sin (a + x f 2), using Table 2,
is given in Tables la and 3b, respectively.

290

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/7/4/290/354207 by guest on 19 April 2024

Differentiation

Table 1

Backus normal form specification of algebraic expressions to be differentiated

<constant> ::= a|A|c|rf|e|/|g|ft|/|./|fc|/| m|n|o|/>|tf|r|.s|f |i/| v\w\z
independent variable) ::= x
<dependent variable) ::— y

<digit)::=O|l|2|3|4|5|6|7|8|9|
<number> ::= <digit> | <number> <digit> |

<number> . <number> | . <number>

(expression) :: = (constant) | (independent variable) |
(dependent variable) | (number) |
(expression) f (expression) | — (expression) |
+ (expression) | (expression) * (expression) |
(expression) / (expression) |
(expression) + (expression) |
(expression) — (expression) | ((expression)) |
sin ((expression)) | cos ((expression))

(statement) ::= (expression) = (expression)

(program) :: = (statement)

Table 2

Syntax table for differentiation

(statement) = : : (program) {pj
(expression) = (expression) : := (statement) {p3.2 = pi-2}

sin ((expression)) = : : (expression) {sin (̂ 2)1(̂ 2-2)* c o s (pi)}
cos ((expression)) = : : (expression) {cos (p2)| — (pi-2)* s m 0>2)}
(expression) f (expression) = : : (expression) {p3 f Pi\(p3 f piYHpx* p3.2)l p3 + Pi-z* In (Pa))}
—(expression) = : : (expression) {— pi\—pi.2}
(expression) / (expression) = : : (expression) WPI |0>3-2*PI — Pi*Pi-2)K(Pi) t 2)}
(expression) * (expression) = : : (expression) {p3*pi\p3-2*Pi + P3*Pi-2i
(expression) — (expression) = : : (expression) {p3 — Pi\p3.2 — pi-2}
(expression) + (expression) = : : (expression) {p3 + p\\p3.2 + p\-2}
+ (expression) = : : (expression) {+pi\ + py.2}
((expression)) = : : (expression) {(p2)\(p2.2)}
(independent variable) = : : (expression) {pi\l}
(dependent variable) = : : (expression) {pi|/V}
(constant) = : : (expression) {/>,|0}
(number) = : : (expression) {pt\0}
(number) = : : (number) {-pi}
(number) . (number) = : : (number) {p3.pi}
(number) (digit) = : : (number) {p2pi}
(digit) = : : (number) {pj

x =:: (independent variable) {x} y ='•'• (dependent variable) {y}

0 = : : (digit) {0} a =:: (constant) {a}
1 = : : (digit) {1} b =:: (constant) {b}

9 =:: (digit) {9} z = : : (constant) {z}

291

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/7/4/290/354207 by guest on 19 April 2024

Differentiation

Improvement of output
Although the output obtained by using Table 2 will

be the correct derivative, it is inelegant and can be
improved by the omission of superfluous terms of the
form 0 * x.

Some of these arise because the derivative of a constant
is zero, and these can be eliminated by first defining a
<constant expression) as any arithmetic formula that
only contains constants. The definition of an <expression>
can then be expanded to include as special cases all those
formulae in which a <constant expression) appears on
one side of a binary arithmetic connective.

If appropriate definitions are appended to each of
these expanded formation rules, zero and other super-
fluous terms will be eliminated.

For example, if

<expression> f <constant expression) = :: <expression>

{p3 t Pi\P3-2* Pi * P3 t (Pl ~ 1)}

is added to Table 2, the output for

(sin(2x)) f b

is (2 * cos (2 * xj) * b * (sin (2 * x)) f (b - 1)

rather than
(sin (2 * x)) f b (b * 2 * cos (2 * x)/
(sin (2* JC)) + 0 * In (sin (2 * *))

In the Appendix an expanded version of the syntax
of Table 1 is given which allows, as well as the above,

(A) an increase in the number of standard functions
permitted;

(B) the inclusion of comments, which are ignored by
the compiler;

(C) the differentiation of an implicit function;
(D) the representation of differentials in the input

expression as y', y" etc;
(E) the differentiation of more than one formula at a

time;
(F) a better output, by the inclusion of other special

cases of the differentiation formulas
and

(G) the use of declarations.

Changes (A) and (B) are self-explanatory, whilst
changes (C), (D) and (E) will be discussed in the next
section; changes (F) and (G) are discussed below.

Some special cases of the differentiation formulas
included, besides those already discussed, are:

independent variable) f 1 = : : <expression> {p3\ 1}
independent variable) f <number>=:: <expression>

{P3 t Pl\PlP2 t PI-2J

These sentences, given the inputs x f 1 and x f n, respec-
tively, produce outputs 1 and nx\ m where m = n — 1
(for 72 = 3 the output is 3x f 2), respectively.

In order to obtain the output nx\m, two definition
strings must be associated with every number. The

first definition string is the number itself, while the
second is the number minus one. Thus, in the definition
of the second sentence above, p[.2 stands for one less
than the number represented by pt. The syntactic
definition of <number> which provides the outputs
required is given and discussed in section 1 • 3 of the
Appendix. The improved output obtained by using the
syntax tables corresponding to the BNF description
given in the Appendix, rather than Table 2, is illustrated
in Table 4. This table is a formation sequence diagram
for the example of Table 3.

Change (G), the use of declarations, permits any
<identifier> to stand for, or identify, any variable or
constant. Furthermore, unless the concatenation of
two identifiers is declared as a third identifier, the
compiler recognizes that, for example,

xy

is the juxtaposition of the two identifiers x and y. If the
juxtaposition of two identifiers is understood to mean
the multiplication of the two quantities represented by
the identifiers, then the compiler can accept as an input
the expression

sin cdx f 2y + 2x

which corresponds to

sin (c*d*x f (2*;;)) + 2*x

in the language presented in Table 1. Any product of
variables and constants in which the multiplication
operator * is omitted is defined (syntactically) as a
<simple expression). The syntactic definition of (simple
expression) is given in section 2.2 of the Appendix.

Functions whose derivatives can be obtained
As mentioned above, (C), this program can be used

to obtain the derivative of an implicit function. For
such a function, the output of the program is an alge-
braic expression from which the derivative can easily
be obtained. For example, for

x3 + x2y2 + 1 = x + 2y

the program output is

3x2 + 2xy2 + x22yy' + 0 = 1 + 2 /

from which
3x2 + 2xy2 -

2 - 2xy2

can be obtained. A syntax directed compiler program to
obtain y' can be written.

Derivatives of higher order can be obtained using the
differentiation program. If a derivative of order n is
desired, the program is used n times with the previous
output as its input. Hence, the program must allow
differentials such as y', y", etc. (change (D) above) to

{text continued on page 295)

292

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/7/4/290/354207 by guest on 19 April 2024

Key

d.v.
i.v.
num
cons
exp
digit

Differentiation

for Tables 3 and 4

— dependent variable
— independent variable
— number
— constant
— expression
— digit

statement — statement
program — program
s.e. — simple expression

Table 3

Differentiation of y = 1 / x + sin (a * x \ 2)

a. Diagram of the formula

y = l / x + s i n (a * x f
i

d.v.
i

exp

digit

num

exp

i.v.

exp
exp

cons

exp

i.v.

exp
i

digit
i

num
i

exp

exp

exp

exp

exp

statement

program

293

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/7/4/290/354207 by guest on 19 April 2024

Differentiation

Table 3 (contd.)

b. Formation sequence diagram

symbol

subject of sentence

output

y

d.v.

y

y

exp

y\y

1

digit

1

1

num

1

1

exp

110

X

i.v.

X

X

exp

x\l

l/x

exp

l/x |(0*x-l*l)/((x)t2)

a

cons

a

a

exp

a|0

X

i.v.

X

X

exp

xll

2

digit

2

2

num

2

2

exp

2|0 x t 2 1 fx

x f 2

exp

f2)*((2*l)/x -|-O*ln(x))

exp

a*x f 2 | 0*x t 2 + a* (x f 2) * ((2*1) /x + 0* In (x))

sin (a*x f2) (0*x1h2 +

sin

a*(x

(a*x t 2)

exp

t2)*((2*l)/x + 0* In (*)))*cos (a*x + 2)

l/x + sin (a*x f 2)

exp

l/x + sin (a*x t 2) | (0*x - l*l)/((x) f 2) + (0*x f 2 + a*(x f 2)*((2*l)/x +
0*]n(x)))*cos(a*xf2)

y = (0* x - 1*l)/((xf 2) -

;y = l/x + sin (a*x f

statement, program

\- (0*x t 2 + o*(x f 2)*

2)

((2*1)/* -1-0* In (*)))* cos (a*xt 2)

294

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/7/4/290/354207 by guest on 19 April 2024

Differentiation

Table 4

Formation sequence diagram of y = 1/x + sin (a*x f 2) using the syntax given in the Appendix

symbol

subject of sentence

output

y

d.v.

y\y'

y

var

y\y'

y

s.e.

y\y'

y

exp

y\y'

1

num

l|0

1

cons

l|0

x

i.v.

x\\

1/x

s.e.

l/x| - 1/x f 2

1/x

exp

l/x| - 1/x f 2

a

cons

a|0

X

i.v.

x | l

2

num

2|1

x f 2

s.e.

xf2|2x

a*x T 2

s.e.

a*x f 2|a*2x a

(a*x f 2)

s.e.

*x f 2|a*2x sin (a*x t

sin

2)1

(a*xt
exp

a*2x

2)

cos (a*x t 2)

1/x- - sin (a*

1/x-

x f 2) |

- sin (a*x f

exp

- l / x f 2 -

2)

f a*2x cos (a*xf 2)

begin _y = 1/x + sin (a*x f 2) end

statement

y' = - 1/x f 2 + a*2x cos (a*x f 2)

appear in the input expression. Also, the following
rules of differentiation must be incorporated in the syntax
table corresponding to the BNF description given in the
Appendix:

etc.
Every expression to be differentiated is enclosed within

the brackets begin and end. This permits (change (E))
more than one expression at a time to be differentiated
(see section 3.1 of the Appendix).

The partial derivative of a function may also be

obtained. If z = /(x, y) then ^ can be obtained by using

the following program:

begin independent variable (y);
dependent variable (z);
constant (x, a, b, c,. . .);

begin z = /(x, y) end end

The derivative ^- of an implicit function such as

f{x, y,z)=g (x, y, z)
can be obtained by changing the last line of the above
program to

begin/(x, y, z) = g{x, y, z) end end

As above, the output of the program is an algebraic
~bz

expression from which ̂ r—can easily be obtained.

If vv is a complex function of z, and
w =f(z) = u(x, y) + iv(x, y)

295

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/7/4/290/354207 by guest on 19 April 2024

Differentiation

then if the function has a derivative it obeys the Cauchy-
Reimann conditions and

dw ~du i7)v
dz ~bx ~bx ~~

dw
Thus, — is obtained by the following program:

begin independent variable (.v);
dependent variable (w);
constant (y, i, a, b, c, . . .);

begin w = u{x, y) + iv(x, y) end end

Ambiguity and operator precedence
The BNF specification of a language is often ambiguous

(Cantor, 1962, Corn, 1963). This is true of the specifi-
cation given in the Appendix. The ambiguity is removed
by specifying the order in which the sentences formed
from the syntax are to be used in translating an expres-
sion. The method by which this order is specified is
presented in detail elsewhere (Schorr, 1962); essentially
the order in which the sentences are used corresponds
with their order of appearance in a syntax table such as
Table 2. Combined with the right-to-left scan employed
by the compiler, the order given in Table 2 ensures that
the rules of arithmetic precedence of the operators
presented in section 2.2 of the Appendix hold.

Conclusions
A program for obtaining the derivatives of algebraic

formulas has been presented. This program is written
in Backus normal form as augmented by E. T. Irons for
use in a syntax-directed compiler. For an ALGOL 60
program the output of this compiler is an equivalent
assembly language program. This program has to be
assembled and the resulting machine-code program
executed before the solution of the original problem is
achieved. In contrast, for the differentiation program,
the output of the compiler is the solution of the original
problem. Therefore, in addition to its use in writing
compilers, augmented Backus normal form can be used
as a programming language in its own right. Thus, the
usefulness of the compiler, originally written to translate
ALGOL 60 (or similar language) programs, has been
extended.

It is shown in this paper that changes sometimes are
required in the simplest syntactic definition of a language.
These changes were necessary to improve the translation
obtained. If a syntax-directed compiler is to be used,
then these changes were probably necessary in the

References
BACKUS, J. W. (1959). "The syntax and semantics of the proposed international algebraic language of the Zurich ACM-GAMM

conference," Proc. International Conf. Information Processing, UNESCO, Paris, France, June 1959, pp. 125-132.
CANTOR, D. G. (1962). "On the ambiguity problem of Backus systems," Jour. ACM, Vol. 9, No. 4, pp. 477-479.
GORN, S. (1963). "Detection of generative ambiguities in context-free mechanical languages," Jour. ACM, Vol. 10, No. 2,

pp. 196-208.
HANSON, J. W., CAVINESS, J. S., and JOSEPH, C. (1962). "Analytic differentiation by computer," Comm. of the ACM, Vol. 5, No. 6,

pp. 349-355.

original syntactic definition of any language if an effi-
cient or improved translation is to be obtained. This is
especially true if the translation is to be made into the
assembly language of a particular computer, and the
computer's peculiarities are to be taken advantage of,
or compensated for.

Besides illustrating the above syntax-directed compiler
principles and uses, the program for analytic differentia-
tion has the following advantages over other such
programs.

(1) The program is not written in an assembly language
but in a higher-level language. This facilitates
programming and results in fewer errors.

(2) Since the syntax-directed compiler is an already
tested program, only the syntax tables remain to
be tested. For example, no input/output routines
have to be tested.

(3) Any new function can be added to this program
by just adding a sentence to the syntax tables
derived from the Appendix.

(4) Any other desired changes in the program can be
made without too much difficulty.

(5) Derivatives of higher order, partial derivatives,
and the derivatives of implicit functions and
complex functions can be obtained.

(6) Any identifier can be used to stand for any constant
or variable desired.

(7) The derivative of more than one function at a time
can be found.

Work on the syntax-directed compiler programs to
do the following appears to be feasible and will be
investigated.

(1) Simultaneously calculate all of the partial deri-
vatives of a function.

(2) Calculate the Cauchy-Riemann equations for a
complex function.

(3) Apply the chain rule to a change of independent
variables.

(4) Solve for the derivative in the output expression
when the input of the analytic differentiation
program is an implicit function.

Such a set of programs should provide a complete
package for analytic differentiation.

Acknowledgement
The author would like to thank Mr. Eric Nixon for

his help in preparing the manuscript.

296

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/7/4/290/354207 by guest on 19 April 2024

Differentiation

IRONS, E. T. (1963a). "The structure and use of the Syntax Directed Compiler," Annual Review in Automatic Programming,
Vol. 3, pp. 207-227.

IRONS, E. T. (1963b). "Towards More Versatile Mechanical Translators," Proc. of Symposium in Applied Mathematics, Amer.
Math. Soc, Vol. XV, pp. 41-50.

NAUR, P. et al. (I960). "Report on the algorithmic language ALGOL 60," Comm. of the ACM, Vol. 3, No. 5, pp. 299-314, and
Computer Journal, Vol. 5, p. 349, (Jan. 1963).

SCHORR, H. (1962). "A syntax directed translation procedure," TR No. 25, Dept. of Electrical Engineering, Digital Systems Lab.,
Princeton University.

Appendix
The syntax of a language for analytic differentiation

1. Basic symbols, identifiers and numbers

1.1 Letters and delimiters

1.4 Numbers
<digit>::=l|2|3|4|5|6|7|8

<basic symbol) : : = <letter> | <digit> | <delimiter> |
<standard function)

<letter> ::= A\B\C\D\E\F\G\H\I\J\K\L\M\N\
O\P\Q\R\S\T\U\V\W\X\Y\Z\
H | | | | | | | | | | |

f

H | | | | * | | | ; | | | |
o\p\q\r\s\t\u\v\w\x\y\z

<delimiter> : : = <arithmetic operator) |(separator)|
(bracket) | (declarator)

(arithmetic operator) : := + | — | *
(adding operator) : : = + | —
(multiplying operator) : : = * |/
(separator) : : = , | . | = | ; | comment
(bracket) : := (|) | begin | end | [|]
(declarator) : := independent variable | dependent

variable | constant

Discussion. The same "comment" conventions as in
ALGOL 60 apply here. The juxtaposition of two
identifiers to indicate multiplication is "denned" as both
a multiplying operator and an arithmetic operator.

1.2 Identifiers

(identifier) : := (letter) | (identifier) (letter) |
(identifier) (digit)

Discussion. Identifiers have no inherent meaning but
are used for the identification of variables and constants.

1.3 Function names

(function name) : : = exp|ln|log. (number) . |sin|cos|
tan | cot | sec | esc | arcsin | arccos | arctan | arccot |
arcsec | arccsc | sinh | cosh | tanh | coth | sech | csch |
arcsinh | arccosh | a re tanh | arccosh |arcsech | arccsch

Discussion. The functions whose names are given above
are, respectively, the exponential, natural logarithm,
logarithm to the base (number), sine, cosine, tangent,
cotangent, secant, cosecant, arcsine, arccosine, arctangent,
arccotangent, arcsecant, arccosecant, hyperbolic sine,
hyperbolic cosine, hyperbolic tangent, hyperbolic
cotangent, hyperbolic secant, hyperbolic cosecant, hyper-
bolic arcsine, hyperbolic arccosine, hyperbolic arctangent,
hyperbolic arccotangent, hyperbolic arcsecant, and
hyperbolic arccosecant function.

—. (integer) | — (integer)
(all zero) . (integer) | +

(zero) : : = 0
(nine) : : = 9
(all zero) : := (zero) | (all zero) (zero)
(integer) : : = (digit) | (integer) (digit) | (integer)

(zero) | (integer) (nine) | (zero) | (nine)
(number) : := (integer) | (integer) . (integer)

. (integer) |

. (integer)
(number)

Discussion. With each (digit), except 0 and 9, five
definition strings are associated: they are, (1) the digit
itself, (2) the digit minus 1, (3) the digit plus 1, (4) the
ten's complement of the digit, and (5) the nine's comple-
ment of the digit. Zero and nine are treated as special
cases. An integer is formed from a juxtaposition of
digits. By properly combining the definition strings of
each digit, five strings are associated with every integer;
these strings are the same as the five above strings (with
the word digit replaced by the word integer). Finally,
each (number) is formed from one or two integers and
has two definition strings associated with it: (1) the
(number) itself, and (2) the (number) minus one. For
example, the integer 523 has the following definition
strings

523 | 522 | 524 | 477 | 476
and the definition strings of the numbers 523, .523,
523.523, —.523, -523.523 are, respectively:

523 | 522
.523 | - .477

523.523 | 522.523
- .523 | -1.523

-523.523 | -524.523

The two definition strings of a number m, are used to
obtain the output mx", where n = m — 1, as the deriva-
tive of xm. For example, the output 523x522 is obtained
as the derivative of x523.

2. Expressions

2.1 Variables, constants, constant expressions and
subscripts

(independent variable) :: = (identifier) |
(identifier) [(subscript)]

297

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/7/4/290/354207 by guest on 19 April 2024

Differentiation

<dependent variable) :: = <identifier> | (identifier)
[(subscript)]

(variable) :: = (independent variable) | (dependent
variable) | (variable)

(constant) :: = (identifier) | (identifier)
[(subscript)] |
(number) | (constant) * (constant) |
(constant constant)
(constant expression) :: = (constant) |

(constant expression) (arithmetic operator)
(constant expression) | (function name) (constant) |
(function name) ((constant expression)) |
((constant expression))

(subscript) :: = (identifier) | (integer) | (identifier>+
(integer) | (identifier) — (integer) | (integer) +
(identifier) | (integer) — (identifier)

Examples
x
y

C[l] * C[2]
C[2]

Discussion. C[l] C[2] represents the product of the
constants C[l] and C[2]; the multiplication sign * has
been omitted.

2.2 Expressions
(simple expression) :: = (variable) | (constant) |
(variable) f 1 | (variable) f 2 | (variable) f
(number) | (variable) f (constant) |
(constant) (multiplying operator)
(simple expression) | (simple expression)
(multiplying operator) (constant) | (simple

expression)
(multiplying operator) (simple expression) |
((simple expression))
(expression) :: = (constant expression) | (simple

expression) | (expression) | 1 I
(expression) f 2 | (expression) f (number) |
(expression) (arithmetic operator) (constant

expression) |
(constant expression) (arithmetic operator)

(constant expression) |
(expression) (arithmetic operator) (expression) |
((expression)) | — (expression) | + (expression)
(function) (variable) | (function name)
(simple expression) | (function name) ((expression))

Examples
ax f 2 + bx + sin ex
a*x f 2 + b*x + sin (c*x)

xy + exp (xy f 2 + sin y) / y f (2x + 3)

Discussion. A (simple expression) is a product of
variables, powers of variables and constants; an
(expression) is any algebraic formula.

The following rules of precedence hold:—
first: standard functions
second: exponentiation
third: unary minus
fourth: division
fifth: multiplication
sixth: subtraction
seventh: addition

3. Statements, declarations, blocks and programs
3.1 Statements

(statement) :: = begin (expression) = (expression)
end |
(statement) (statement)

Examples
begin y = ax f 2 + bx + sin ex end
begin ay f 2 + cos (yx + 10) = xy + exp

(xy f 2 + sin y) / y \ (2x + 3) end

Discussion. This program may be used to obtain the
derivative of more than one expression at a time. Each
expression whose derivative is to be obtained corresponds
to a (statement). The derivative of an implicit function
can also be obtained using this program.

3.2 Declarations
(identifier list)

[(subscript)]
(declaration) ::

:: = (identifier) | (identifier)
| (identifier list), (identifier list)
= independent variable ((identifier));

dependent variable ((identifier));
constant ((identifier list));

Example
independent variable (x);
dependent variable (y);
constant (a, b, c);

Discussion. A declaration serves to identify the inde-
pendent variable, the dependent variable and constants
of a statement to be differentiated.

3.3 Blocks
(block) : := begin (declaration) (statement) end |

begin (declaration) (block) end | (block) (block)

Example
begin independent variable (x);

dependent variable (y);
constant (a, b, c);

begin y = ax f 2 sin ex + bx / cos x end end

Discussion. Any identifier in a declaration appearing
within a block is valid only for the block. This permits
an identifier, for example x, to be an independent variable
within one block, and a constant in another block.

3.4 Program
(program) ::= (block)

298

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/7/4/290/354207 by guest on 19 April 2024

