
A method for minimizing a sum of squares of non-linear functions
without calculating derivatives

By M. J. D. Powell*

The minimum of a sum of squares can often be found very efficiently by applying a generalization
of the least squares method for solving overdetermined linear simultaneous equations. An original
method that has comparable convergence but, unlike the classical procedure, does not require
any derivatives is described and discussed in this paper. The number of times the individual
terms of the sum of squares have to be calculated is approximately proportional to the number
of variables. Finding a solution to a set of fifty non-linear equations in fifty unknowns required
the left-hand sides of the equations to be worked out fewer than two hundred times.

1. Introduction
Although the problem of minimizing a sum of squares

of non-linear functions occurs frequently in curve
fitting, in determining physical parameters from experi-
mental observations, and in solving non-linear simul-
taneous equations, which may be overdetermined, it
appears that this field of research is practically neglected
by numerical analysts. This is probably because of the
undeniable efficacy of the "generalized least squares"
method which, although well known, will be described
in Section 2. Most users of this procedure are thankful
that only first derivatives of the functions are required,
particularly as in many applications the eventual con-
vergence is quadratic. However, it will be shown that
a procedure, which is similar to the well-known one, can
be devised that has the same convergence properties but
does not require any derivatives. In essence it approxi-
mates the derivatives by differences, but this is done in
such a way that only before the initial iteration are sub-
stantially more function evaluations required. The new
method is described in Section 3.

In Section 4, three important properties of the method
are derived. They are (i) that it is unlikely to have
converged before the minimum is reached, (ii) that, in
a sense, it chooses conjugate directions of search, and
(iii) that it yields a ready approximation to the variance-
covariance matrix.

Some numerical examples are provided in section 5.
They include an illustration that the procedure to be
described may be applicable to fitting problems in which
the "best fit" is necessarily poor, although the fast
convergence depends on the sum of squares tending to
zero.

2. The generalized least squares method

It is required to find xu x2, • • ., xn, (x, say), to
minimize

= S [f«Kx)]\ m>n. (1)

It is hoped that using a superscript to distinguish the m
different functions that appear in the sum of squares will

not be found confusing—derivatives will be written out
explicitly. In addition the notation

(2)

and (3)

will be used.
The method is iterative, and an iteration requires an

approximation % to the position of the minimum. If
the actual minimum is at % -f 8 then, by differentiating
(1),

k = l
= 0; i=\,2,...,n. (4)

By approximating the left-hand side of (4) by the first
two terms of the Taylor series in 8 about %, equation (5)
is obtained.

m r~

L sf(©./wGD
* - i L + S

0. (5)

The least squares method hinges on the further approxi-
mation that the term G^O;)/***© can be ignored.
This term is of order S if / w ( 5 ) is z e r o a t t n e minimum,
and it vanishes if/ ( i ) is linear in the variables. In all
other cases the convergence of the procedure will be only
linear, the correction to \ being calculated by solving

n ( m

2 { S s = - S
fc=i

1 = 1 , 2 , . . ., n. (6)
Note that the matrix of these equations is in general

positive definite so that

(7)

unless all the derivatives of F(x) at % are zero. There-
fore, unless 5 happens to be a stationary point of F(x),
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Minimization without derivatives

extending the iteration to calculate a positive value of A,
Am say, which minimizes F(5 + A8), provides a theo-
retical guarantee that the least squares method will
converge. Of course (£ + Am8) is chosen as the new
approximation to the minimum. The positive semi-
definite case is discussed in Section 4.

If the second derivatives G^j\%) are not zero, the
quadratic convergence depends on the functions /(/c)(£)
being of the same order as the correction 8. In this
case numerical estimates of the derivatives gf\%) in (6)
that are in error by 8 are acceptable. On the other hand,
if the second derivatives are zero, one expects numerical
estimates of the derivatives to be exact. It is for these
reasons that the procedure to be described has con-
vergence comparable to the generalized least squares
method.

3. The procedure without derivatives

The new method is iterative, and at the start of an
iteration n linearly independent directions in the space
of the variables, </(l), d(2), . . ., d(n), say, are required
together with estimates of the derivatives of the /(fc)

along the directions. The notation that will be used for
the estimated derivative of the A:th function along the ith
direction is y(fc)(/), so

/*>(/) « S gf\x).dj{i); i = 1, 2, . . . , « ;

k=l,2,...,m. (8)

To equilibrate the matrix of equations (11), the directions
should be scaled so that

£ [y w 0 ) ] 2 = i ; » = i , 2 , . . . , » .
fci

(9)

It is intentional that the notation does not allow for
the dependence of yw(i) on x, because the approxi-
mation to the derivative is a number which is calculated
when d(i) is chosen. If x is changed by 8, the resultant
error in y(fc)(0 will be of order 8 multiplied by a second
derivative term, and it has been pointed out that this
can be tolerated.

As in the least squares method, an approximation to
the position of the minimum, \, is required and a
correction to it, 8, is calculated. The correction is
worked out by substituting the approximate derivatives
in (6) so, if

8 = S (10)

m

s1 Ufc=i
\J

1 = 1 , 2 , . . . , / ! . (11)

It is convenient to define

(12)

As recommended in Section 2, the iteration is extended
to find Am to minimize F(& + AS) but, because (8) is an
approximation, Am is not necessarily positive. The
procedure described by Powell (1964) is used for finding
the minimum along a line and, at the same time, estimates
of the derivatives of the functions fm in the direction 8
are worked out in the following way.

The function values /<*>(§ + A, 8) and /*>(? + A28),
k = 1, 2, . . ., m, which yield the lowest and next lowest
values of F(^ + A8) are noted. These are differenced to
provide the approximation

3A-7 v*-r™>~ (Aj-A2)
= W(fc>(8). (13)

The approximation is improved by

v<«(8) = ii<»(8) - /*/*>(§ + Am8)
where

Am8)]/

(14)

(15)

because it is known that the derivative of F(x) along 8
at \ + Am8 must be zero. Finally v(ft)(8) and 8 are
scaled so that the Euclidean norm of the derivative vector
is unity, in accordance with (9).

Of course the derivatives along 8 have been calculated
in order that 8 may replace one of </(l), d(2), . . ., d(ri).
d(f) is replaced, where t is the integer such that

\p{t).q{i)\=m^\p{i).q{i)\. (16)

5 + Am8 replaces the original value of %, and then the
next iteration may be commenced.

An important point to notice is that, apart from
calculating function values, the most laborious stage of
the iteration is solving the equations (11). After each
iteration just one row and one column of the left-hand
side matrix are changed so that, if the inverse of the old
matrix is stored, that of the new can be worked out by
partitioning in an n2 rather than an n3 process. The
details of this calculation have been set out very clearly
by Rosen (1960).

For the first iteration, </(l), </(2),..., d(n) are chosen to
be the coordinate directions. A starting value of \ has to
be provided, and then values of y(fc)(') must be worked
out. This calculation requires increments eu e2, ••-,€„
to be specified which will yield reasonable estimates of
the first derivatives. They are calculated from

(17)

where s, is a scaling factor, introduced so that (9) may
be satisfied. In accordance with (17), for the first
iteration,

i/(0 = (0, 0, . . ., 0, s,, 0, . . .,0) (18)

the only non-zero element being the ith component.
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Minimization without derivatives

The obvious criterion for ultimate convergence has
been found satisfactory, although it is probably not
difficult to construct examples in which it fails. It is to
stop iterating when both 8 and XmS have acceptably
small components.

4. Properties of the method
For this discussion, it is convenient to introduce a

notation that has purposely been avoided so far. It is
to consider the numbers fw(£), /(2)(5), • • •, /(m)(?) as
the components of a vector /(%)• Similarly, y(0 W'U
represent y(l)0"), y(2)(0> • • •= y(m)(0- Therefore, the effect
of equation (14) is to ensure that

and a necessary condition for \ to be an approximate
minimum of Fix) is that

; i = 1, 2, . . . ,» . (20)

From (19), it may be seen that after an iteration

0 (21)

so at least one of the equations (20) is satisfied. In
consequence, on the next iteration, p(t) is zero and, by
(16), the direction just defined cannot be replaced, until
an iteration is started from a point different from the
current \. Because (16) also ensures that q(t) is not
zero, the directions d(l), d(2), . . ., d(n) remain linearly
independent, and these two facts are practically always
sufficient to ensure that the procedure will not "stick."

The words "practically always" have been chosen
because the possibility that \p(f).q(i)\ is zero for all i
has not been considered. Unless the matrix of equations
(11) is positive semi-definite, it can only occur if all the
numbers p(i) are zero, which is the condition for con-
vergence (20). Otherwise, in the semi-definite case, the
numbers q(j) are not defined by the equations, and will
be calculated to be the components of an eigenvector of
the matrix, the eigenvalue being zero. Along such an
eigenvector the derivative of each fw(x) is predicted to
be zero, and a search along 8 will correct the predictions.
If the derivatives of the individual functions are in fact
zero, the position of the minimum is poorly determined,
and more functions are required to define it.

The linear approximations behind the least squares
method are such that, to first order in 8, equations (20)
are satisfied at the predicted position of the minimum,
§ + 8. Therefore, if/(?).YW = O(S2),

(22)

(23)

(24)

Hence, provided Am is of order unity,

and

These equations show that the derivative vector of a
new direction is, to order 8, orthogonal to the derivative

vectors of those directions that satisfy (20) at the initial
point of the iteration. Therefore, remembering (9), the
left-hand side matrix of equations (11) tends to the unit
matrix. Furthermore, by (8), the successive directions
d that are chosen tend to be mutually conjugate (Powell,
1964) with respect to the matrix

rl7 = £ sf\x)gf(.x). (25)

The last important property of the method is that it
provides a ready approximation to the least squares
variance-covariance matrix, H say, which, by definition,
is the inverse of T. It will now be proved that

S d (26)

For the proof, it is most convenient to use a matrix
notation, and the following definitions are employed:

Bij = g,a\x); i = 1, 2 , . . ., n; j = l , 2 , . . ., m,

Co = yO)(0; i = 1, 2, . . ., n; j = 1, 2, . . ., m
and

D,j = di{j)> i= 1,2, . . ., n; j = 1, 2, . . ., n.

Therefore, from (25),
T = BBT (27)

and it is required to prove that

r - 1 » DDT. (28)
From (8),

C us DTB (29)

and it has just been observed that

CCT » I (30)
so

DTBBTD (31)

D has an inverse because the directions d(i) are linearly
independent, therefore, from (27) and (31),

T w (D7)-1!)-1 = (DD7^-1 (32)

which proves (28).
Note that, particularly if the procedure converges in

less than n iterations, (30) may be a very crude approxi-
mation. This is usually acceptable, because not often
are the elements of a variance-covariance matrix
required to high accuracy. If they are required more
precisely, the following formula, derived from (27) and
(29), may be used

r-1 D(CCT)~iDT. (33)

The elements of (CC7)*1 will have been calculated, if
the recommendation of partitioning in Section 3 is
heeded.

5. Numerical examples
The method was tested using the trigonometrical

equations introduced by Fletcher and Powell (1963).

305

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/7/4/303/354228 by guest on 19 April 2024



Minimization without derivatives

Table 1

Number of function values to solve equations (34)

ft

3
3
5
5

10
10
20
20
30
30
50
50

LST. SQS.

6
5
5

10
5
8
6
9

12
10
—
—

NEW

19
18
24
24
38
34
46
65
75
61

173
101

METHOD

DAVIDON

_

19
23
36
29
89
84
86
92

169
119

CONJ. DIRN.

61
84

104
103
329
369

1519
2206

—

—

They are
n

S Aki sin xj + BkJ cos x} = Ek; k = 1, 2,..., m (34)

and a solution is obtained by denning
fw(x) = 2 AkJ sin xj + Bkj cos Xj - Ek. (35)

y=i

The elements of A and B are random integers between
— 100 and +100, and the components of the initial value
of 5 differ from those of a known solution by up to
+ 0 • 1 TT. No difficulties were encountered in obtaining
the expected answer from the initial approximation.
The number of function values required to calculate
JCI, x2, . . ., xn to accuracy 0-0001 is given in Table 1
for values of n ranging from 3 to 50. m was chosen to
be equal to n so that a comparison could be made with
the results of Fletcher and Powell (1963) and Powell
(1964). The number of function values required by the
least squares method, as described in Section 2, is also
tabulated.

In comparing the columns of the table, it must be
remembered that each time function values are required
by the least squares method, or by Davidon's method,
all the first derivatives must be provided as well. Also,
the methods of the last two columns are designed to
minimize a general function, and take only F{x) into
account when choosing the directions of search. As
well as the labour of calculating first derivatives, a
further factor may be significant. It is that the number
of administrative operations in an iteration of each of
the last three methods is of order n2, while solving
equations (6) is an n3 process.

An experiment was tried to find out the effect of
applying the method of this paper to a sum of squares
of non-linear functions which do not all tend to zero at

Table 2
Number of functions to minimize a sum of squares that

does not tend to zero

n

3
3
5
5

10
10
20
20
30
30

0

21
16
17
20
29
26
41
35
47
46

<5

0 1

29
16
17
20
26
29
42
36
59
47

1

31
14
37
29
47
47

118
88
77

106

10

29
21
33
34
78
86

175
93

134
206

Table 3
The procedure applied to Rosenbrock's function

ITERATION

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

-1-2000
-1-0770
-0-9759
-0-4205
-0-4270
-0-3573
-0-4232
-0-1620

0-0380
0-4193
0-4089
0-6089
0-6770
0-7602
0-8207
0-8725
0-9747
0-9841
0-9919
0-9986
1-0000

Xl

1-0000
0-7294
0-5294
0-0701
0-0765
0-0181
0-1697

-0-0048
-0-0419

0-1554
0-1641
0-3465
0-4309
0-5854
0-6675
0-7514
0-9514
0-9678
0-9827
0-9973
1-0000

-4-4000
-4-3053
-4-2304
-1-0669
-1-0577
-1-0949
-0-0941
-0-3110
-0-4336
-0-2045
-0-0307
-0-2420
-0-2747

0-0741
-0-0605
-0-0992

0-0132
-0-0062
- 0 0 1 1 0

0-0009
-0-0001

/(2)

2-2000
2-0770
1-9759
1-4205
1-4270
1-3573
1-4232
1-1620
0-9620
0-5807
0-5911
0-3911
0-3230
0-2398
0-1793
0-1275
0-0253
0-0159
0-0081
0-0014
0-0000

the minimum. The individual functions are again
defined by (35), but m is chosen to be equal to 2«. The
initial value of \ is chosen as before but, before com-
mencing the iterations, all the values of Ek are changed
by random numbers between — 8 and +S. Again the
position of the minimum is found to accuracy 0-0001;
the required number of function values is given in
Table 2.

306

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/7/4/303/354228 by guest on 19 April 2024



Minimization without derivatives

The table shows that the method can be very effective
even if the individual functions do not tend to zero at
the minimum. The number of function values quoted
for 8 = 0 is less than the corresponding number in
Table 1, because the minimum is better determined in
the experiment, as there are twice as many functions as
variables.

This paper would not be complete without the example
showing the effect of the procedure on Rosenbrock's
(1960) minimization problem

/<•> = 10(x2 - = 1 - *,. (36)

Because there are only two variables, the results of each

iteration are given in Table 3. The total number of
function values required is 70, and during the itera-
tions the progress can best be described as "lively."
Once the corner of the parabolic valley has been
turned, the variables increase monotonically to their
final values, the eventual convergence being particularly
impressive.

As well as being tried on the examples presented, the
procedure has been used to solve a number of practical
problems at A.E.R.E. It has proved thoroughly success-
ful, and it is particularly encouraging that there appears
to be no tendency for the method to become less efficient
as the number of variables is increased.
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