
A one-step method for the numerical integration
of the differential equation y" =f(x)y + g(x)
By J. T. Day'

This paper describes a new one-step method based on the Gauss two-point rule for the numerical
integration of the differential equation y" =f(x)y + g(x). Computational and theoretical
comparison of the new method with other methods is given.

1. The numerical integration of ordinary differential
equations by the use of Gaussian quadrature methods
was introduced into the literature by Hammer and
Hollingsworth (1955), for subsequent developments, see
Morrison and Stoller (1958), Korganoff (1958), Kuntz-
mann (1961), Henrici (1962). In this paper we develop
a one-step method for the numerical integration of the
ordinary differential equation y" = f(x)y + g{x),
y(xo) — .Vo> y(*o) — yo based on the Gauss two-point
rule (see Hildebrand, 1956). Theoretical and computa-
tional comparison of the new method with other methods
is given.

2. By integrating the above differential equation from

+ h\2p - q2)f(xq)/6) (2p -

j>0(l + h\2q - P
2)f(xp)/6) + y'lgh + (2q - p)f(x,

u<- A

XQ'JLO x0 + h (h > 0) we obtain

y'(x0 + h) = /(*„) + £[/(r)Xr) + g{r)\dr (2.1)

Xx0 + A) = .

(xo+h- r)dr + hy'(x0). (2.2)

If we approximate the integrals of (2.1) and (2.2) by
the Gauss two-point rule on [x0, x0 + h] we obtain

y'(x0 + h) = y'(x0) + h[f(xp)y(xp) +/(x>(xp)]/2

+ h[g(xp) + g(xq)]/2 + hYUJ/4320 (2.3)

x0 < ii < x0 + h

h) = y(x0) + hy'(x0) + h2[qf(xMxP)

h*[qg(xp) +pg(xq)]l2

i (2.4)

We note that we do not know y{xp), y(xq); thus if
such an algorithm is to be of computational value we
must obtain accurate approximate values for y(xp) and
y{xq).

We obtain estimates for y{xp) and y(xq) by fitting a
cubic polynomial u(x) to the data y(x0), y'(x0) and the
requirement that u{x) satisfy the differential equation at
the points xp and xq. We now give the details of this
procedure.

Let u{x) = y(x0) + j'(*o)(x — x0) + a(x — x0)
2

+ b{x - xo)\

Set u"(xp) =f(xp)u(xp) + g{xp)
u"(xq) = /(*«)"(*?) + £(*<?) a n d solve for a and b.

We obtain

(2.5)
6(3-P)

6(3-P)
"A- (2-6)

in which
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h2p2
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h2q2

Qq - p)g(xp) -

2q3h2

\g(xq)

h2
P

2f(xp)(p - 3q)

6(3-P)

q\3p - q)h2f(xq)
6{q-p)

h4f(xp)f(xq)/432. (2.7)

where xp = x0 + ph, xq = x0 + qh

p^(3-V3)/6,q=l-p.
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It can be shown that

Rxp)u(xp) +g(xp) = / ( x o M *
+ flp2h2\2 + yv

oPV/6 + O(A4). (2.8)

Likewise a similar expression holds for f(xq)u(xq) +g(xq).
Thus if we substitute these expressions into equations
(2.3) and (2.4), we obtain, after making use of the
properties of/? and q,

y(x0 + h) = y(x0) + hy\x0) + h2y"(x0)l2
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Differential equation

h - T ) ( / ( T M T )

*o < €2 <

hy"(x0) + h2yw(x0)/2

+ h Vv(x0)/6 + h V(*o)/24 + O(/z5)-

Equation (2.9) further simplifies to

y(x0 + h)=y(x0) + hy'{x0) + h2y"(x0)/2

xo

(2.9)

(2.10)

O(h6). (2.11)

Thus the Gauss method agrees with the Taylor expan-
sion about the point x0 of y(x) through the first six terms
and with the derivative y'(x) through the first five terms.

Briefly summarizing the Gauss method: To march
from xn to xn+i one calculates up and uq according to
(2.5), (2.6) where xp = xn+ ph, xq = xn + qh and whereyn
and y'm respectively, replace y0 and y'o in equations (2.5),
(2.6), (2.7) and in the definitions of Gt and G2. One
then substitutes the resulting values for up and uq into

yn+l = ^ + h[f{xp)u(Xp) + f(.Xq)u(Xq)]/2

+ h[g(xp) + g(xq)]/2 (2.12)

y»+i = yn + hy'n + h2[qf(xp)u{xp)
+ pf(xg)u(xg)]/2 + h2[qg(xp) +pg(xq)]/2- (2-13)

We investigate the stability and give further error
analysis of the Gauss method. In this we follow the
fundamental papers of Rutishauser (1952, 1960).

Consider the differential equation y" — ay, a a real
number. These are three cases of interest to us a = k2,
a = 0, a = - k2.

After a brief calculation involving equations (2.5),
(2.6), (2.7), and (2.12), (2.13), we obtain

yn+1 = yn i + ~r-

(2.15)
Equations (2.14) and (2.15) written in matrix notation

are

in which
.

, t cch2

= 1 + 2 A +
cch3

72A C12 =

c22 = c u .

For a = 0 we obtain from (2.14) and (2.15)

yn+1 = yn + hy'n

y'n+\ = y'n-

The solutions of these equations are

yn — Jo + nhy'o
which is of course what one expects in this case.

We treat the cases a — k1 and a = — k2 somewhat
differently as they exhibit markedly different behaviour.
The case we treat first is a = — k2; in this case of
course we get oscillating solutions, so it is important
for us to have the eigenvalues of the above matrix,
equation (2.16), on or inside the unit circle.

The eigenvalues of the matrix (2.16) are

(2.17)

Substituting in —k2 for a in equation (2.17) we note
h2k2

that 1 — -7-T- > 0 for 0 < h2k2 < 12, thus the roots
oa

are complex for h2k2 < 9. It is not difficult to see from
the definition of A that the roots have unit modulus for
0 < k2h2 < 9. Between 9 and 12 the roots are real
and one of the roots is greater than 1 in absolute value.

The stability of the Gauss method compares quite
favourably with other one-step methods now in use.
Liniger (1957) finds that the Runge-Kutta method for the
first-order equation^' = ky is stable for—2- 785<M<0,
which for the above problem would be 0</;2&2<7-756.
Ansorge and Tornig (1960) compute the stability range
of the Runge-Kutta-Nystrom method for the same
equation and find it to be 0 < h2k2 < 6 • 690.

The methods of Co well (1910) and Numerov (see
Hamming (I960)) for the above equation y" = — k2y
have their roots on the unit circle for all real k,h>0.
For this reason, and the fact that they also have order
six local error, they are usually recommended for the
numerical integration of equations of the form
y" = / (x) j -\-g{x) in which f(x) < 0. Furthermore,
one does not need to carry values of y' along in the cal-
culations. Weighted against this advantage is of course
the disadvantage that they are not self-starting. Com-
putational comparison of the Gauss method with these
methods is given in a later paragraph.

Consider the case / ' = k2y. The analysis of this
equation takes a somewhat different turn from that of
the preceding equation y" = — k2y. In the preceding
case we have oscillating solutions; here our solutions
are exponential in nature. For this case we rely on the
analysis given by Rutishauser (1960). Therefore we
make a few preliminary remarks.

The solution of the differential equation y" = k2y
written in matrix form is

This is a special case of a general result found for example
in Birkhoff and Rota (1962).
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Differential equation

It is easy to convince oneself that the above equation
for JC = x0 + nh can be written in the form

for large x and small h. Rutishauser (1960) calculates
the relative error for the Runge-Kutta-Nystrom method

P
+ h3k4/6 + h5k6p20

>. + h3k6/6 + h5k5/120 + ... 1"
+ h2k2/2 + h4k4/24 + h6k6p20]

(2.19)

In order to use the techniques of Rutishauser effec-
tively we expand I/A in the elements of the matrix of
(2.16) in power series. This series will converge provided
that h2k2/lS < 1.

Denoting this matrix by the symbol C, it can be seen
that its elements are:

C l l = 1 + h2k2/2 + k4h4\24 + h6k6/S64 + ...

(2.20)

Cll —

C\2 =

Cll =

We easily

cn

• h+ hH

hk2 +

obtain
eAh

lim —rr
h-+o h5

c2/6 + k

h3k4/6 -\

c r

4/25/108 + . .

h Uh5k6l\296

0 £4/l<
6/270 0

K

Thus the Gauss method is of order four by the definition
of Rutishauser.

For the Runge-Kutta-Nystrom method Rutishauser
obtains the matrix (here k = 1)

• 0 -1/120"]
_l/480 0 J '

We now treat the relative error of the Gauss method
for the equation under discussion in case a large number
of integration intervals (large x, small h) is to be con-
sidered.

The maximum eigenvalue of our matrix C is

A = c,i + V(.ci2c22) = 1 + hk + h2k2/2
+ hW/6 + hAk4/24 + 23&5/!5/2592 + . . . .

(2.21)

Thus the relative error F (in the sense of Rutishauser)
of the Gauss method is

kh - \n\ log (ehk) - log A
F

= log 7A:5A4/12960

for the equation / ' = k2y and finds that Fm x h4ks/320;
for the Runge-Kutta method he obtains Fm x h4k5/120.
A similar calculation to that above yields for the method
of Hammer and Hollingsworth Fm « h4k5/720.

We consider three computational examples. We have
written programs in FORTRAN for the CDC 1604
computer for the following additional methods, Runge-
Kutta and Numerov.

In each of the three examples we take the step size
h = 0-02.

Our first example is the differential equation
y" = (x2 + \)y with the initial conditions taken at x — 0
so that the solution is e*2/2. We take all necessary
starting values as exact (see Table 1).

Example two is a Mathieu differential equation
y" + 100(1 — 0-1 cos (2x))y = 0 with the initial con-
ditions taken at x = 0 as y(0) = 1, j>'(0) = 0. Starting
value for Numerov's method is taken from Runge-Kutta
calculation (see Table 2).

Our third example is the Bessel differential equation
y" + (100 + 1/(4JC2))J> = 0 with initial conditions taken
at x = 1 so that the solution is \/xJ0(10x). Starting
values were taken from the tables of Bessel functions
British Association for the Advancement of Science
(1958) to 10D (see Table 3).

Thus our Gauss method compares quite favourably
with the two other methods under consideration in the
three computational examples we have considered.

3. I am especially indebted to Prof. Preston C. Hammer
for many discussions on the numerical solution of
differential equations, and to the Wisconsin Alumni
Research Foundation and the National Science Founda-
tion who, through the Graduate Research Committee,
made available to me the computing facilities of the
Numerical Analysis Laboratory of the University of
Wisconsin.

X

1-0
2 0
3 0
4 0
5 0

GAUSS

1-648721272
7-389056121

9001713188
2980-957995

268337-2769

Table 1

Differential equation y"

RUNGE-KUTTA

1-648721264
7-389055819

9001710938
2980-954707

268336-2736

= (x2 + l)y

NUMEROV

1-648721287
7-389056409

9001714644
2890-959682

268337-7249

EXACT ( 1 0 D ) MACHINE

1-648721271
7-389056099

9001713130
2980-957987

268337-2864
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Differential equation

Table 2

Differential equation / ' + 100(1 — 0 1 cos (2x))y = 0

X

10
2-0
30
40
50

GAUSS

-0-9084191
0-2309663
0-2057556

-0-4265191
0-9417347

RUNGE-KUTTA

-0-9084380
0-2308945
0-2053593

-0-4260468
0-9415266

NUMEROV

-0-9084107
0-2309647
0-2058659

-0-4266454
0-9417662

EXACT (7D)

-0-9084179
0-2309590
0-2057667

-0-4265317
0-9417373

Table 3

Differential equation y" + (100 + l/(4x2))^ = 0

References

X

20
30
40
50
60
70
80
90
10-0

GAUSS

0-2362089
-0-1495953
00147367
0-1247968

-0-2240571
0-2511054

-0-1972648
0-0798972
0-0631926

RUNGE-KUTTA

0-2362150
-0-1496406
0-0148323
0-1246737

-0-2239581
0-2510909

-0-1973748
0-0801276
0-0628991

NUMEROV

0-2362056
-0-1495801
0-0147085
0-1248295

-0-2240786
0-2510999

-0-1972238
0-0798261
0-0632743

EXACT (7D)

0-2362085
-0-1495937
0-1047338
0-1248002

-0-2240592
0-2511049

-0-1972606
0-0798900
0-0632007
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