
Estimation of the line over-relaxation factor and convergence
rates of an alternating direction line over-relaxation technique

By D. J. Evans'

In this paper, an alternating direction line over-relaxation process is applied to the Dirichlet
problem for the Laplace difference equation following the recent successful approach of Gara-
bedian (1956). Estimates for the line over-relaxation factor and the convergence rate for both
the 5-point and 9-point finite-difference equations are derived which agree closely with experi-
mental results.

The technique first used by Garabedian (1956), and later
by others, including Young (1962), Varga (1962), and
Evans (1962a), for the estimation of over-relaxation
factors for iterative methods such as S.O.R. and S.L.O.R.
has shown itself to be extremely useful and more general
in application than the rigorous theory developed by
Young (1954). It is well known, for instance, that for
the familiar 9-point finite-difference formula the matrix
of coefficients does not possess Young's "Property A".
Nevertheless, using the approach of Garabedian we are
able to obtain a formula for the relaxation factor which
agrees closely with experimental results. His technique
may briefly be described as follows. He regards suc-
cessive iterations of the iterative process as time steps to
give an analogous hyperbolic difference equation, from
which a good estimation of the over-relaxation factor is
obtained by maximizing the decay of time-dependent
terms in the solution of the equation. In the present
paper a similar theory is applied to an alternating direc-
tion line over-relaxation process, previously described
in Evans (1962b), and for which no adequate theory has
been obtained. It is shown that good agreement with
experimental results can be obtained. This theory is
dependent on the assumption that the mesh size
approaches zero.

The model problem of the Laplace partial differential
equation over the unit square with prescribed boundary
values is again chosen so that comparison may be made
with earlier work on S.O.R. and S.L.O.R. methods.
The usual procedure of replacing the partial differential
equation by a system of finite-difference equations based
on a discrete uniform mesh of size h reduces the problem
to one of solving a large set of linear equations in which
the coefficient matrix is sparse.

Subscripts i and j are used to refer to the column and
row locations of a point on the grid, and if, as in Evans
(1962a), we express the 5-point finite-difference equation
at the point (i,j) in the form

the column i, we obtain a group of (N — 1) equations of
the form

and group all such equations (1) for all the points along
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+ (2)

j = l)to

in which the coefficient matrix is of tridiagonal form.
Such systems of simultaneous equations are efficiently
solved by a method described by Evans and Forrington
(1963) which has some advantages over, but less
generality than the method of Cuthill and Varga (1959).

When we consider all such like systems of equations
along the columns of the network we obtain the method
of successive line over-relaxation, S.L.O.R., whereby, on
any particular column, new values at pivotal points are
computed simultaneously from the most recent values
on the grid, and the iterative process moves successively
from column i = 1 to i = N — 1. In the above equa-
tions, j8 is a suitably chosen constant termed the line
over-relaxation factor, superscript n refers to the present
(known) iterate on the grid, and we are in the process
of determining the (n + l)th iterate. At any stage of
the whole iterative process, only one set of iterates, past
or present, is needed for the calculation to proceed, a
consideration which makes the method more adaptable
for use on high-speed computers. The determination of
j8, which is used for speeding up the convergence rate
of the iterative process, is important; the theoretical
considerations concerning its choice, and the agreement
with experimental results is given in Evans (1962a).

Let us now consider a variant to the above procedure
which culminates in a method which is termed the
alternating direction successive line over-relaxation pro-
cess, and which consists of one iteration of the above
process, whereby all the columns are processed in turn
followed by a similar operation in which all the rows
are processed in turn. The 5-point difference equation
similar to (1) and suitable for row-wise treatment is

$)+l - 4$3]- (3)
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The relevant equations for the two-step iterative method
are thus:

(4)- 4(1

for (1,7 = 1) to (i,j — N — 1) and each column i = l(l)iV,
followed by

[ ] (5)
for(i = l,y) to {i = N— \,j) and each rovrj= l(l)N,

where m now denotes an iteration count in either direc-
tion of line iteration (row or column).

We see immediately that the new method enjoys all
the advantages of the previous method and our imme-
diate concern is now the choice of p to optimize the
convergence rate and its comparison with previous
methods such as S.O.R. and S.L.O.R. with known
convergence rates.

We proceed as before and express P in the form

p = 4/3(1 + Ch) (6)

where h is the mesh spacing and C a positive quantity,
and on substitution in (1) we see that it approximates
the hyperbolic partial differential equation

, h) = = 0 (7)

for small h. (See Evans (1962a).)
Similarly, when we substitute p into equation (3), we

see that it approximates the hyperbolic equation

Hx, y, h) = 4>xx + 4>yy - t,tl - 3C<j>tl = o (8)
under similar discretization conditions, where in this
case t2 = t{ + h. Now, when these two line iterations
(row and column) are combined to form an alternating
direction line iteration process as described in Section 2,
the values ^>i(x, y, tx) and tfi2(.

x> y> h) a r e t n e results given
by a difference differential equation on a grid of size
h - h = h.

If we now denote by ^{x, y, i), the partial differential
equation analogue representing the new method, then
on expanding by Taylor series, these two relationships
must be valid:

and ^ + OCA2),

from which we can determine \fi for small h by neglecting
terms of Q(h).

Hence, the hyperbolic partial differential equation

- 0-5<f>xl

-0-5&, - , = 0 (9)

represents an approximation to the alternating direction
line iteration for small h, where now each double
iteration stage is considered as a time step of an unsteady
problem, and index 2m refers to a time variable t, whilst
index (2m + 2) refers to a new time of {t -f 2h), where
h is the mesh size.

Let us now introduce the new variable s=t-±-x/4-{-y/4
so that <fi(x, y, t) = <f>(x, y, s — JC/4 — y/4). On sub-
stitution into equation (9) this produces the equation

+ \*x, + ^<f>ss+ 4>ys + \<t>ys + ^<f>ss

<f>y

which, on summing terms, gives an equation of wave-
propagation type

4>xx + hy -1*,. - 3C& = o. (io)

Applying the method of separation of variables to (10),
we obtain the result

X" Y" 1S"
T~ + T" = 8 T (11)

where k2 is a constant and <f>(x, y, s) = X(x) Y(y)S(s).
Finally, the representation

4>(x,y,s) = <f>0(x,y) + £ + b,e-**)<f>r(x,y) (12)

yields a solution <f>(x, y, s) of (10), where <f>0 is the steady-
state solution, am and bm are Fourier coefficients,

pr = 12C - 2V2(18C2 - k2)1'2,

qr = 12C + 2V2(18C2 - k2)1'2 (13)

and <f>r and k2 are the eigenfunctions and eigenvalues of

= 0 (14)

with homogeneous boundary conditions.
As before, the largest exponent of the time-dependent

terms in (12) governs the decay process as t increases, i.e.,

p = Re [12C - 2<v/2(18C2 - A:2)"2] (15)

where k\ is the smallest eigenvalue of (14).
We now choose the constant C so that the exponent p

is a maximum, and hence the maximum rate of conver-
gence is achieved for the iterative process. This occurs
when C = kJ3y2, which gives p = 2y/2kv for the
exponent governing the convergence rate. Yet again, as
in earlier references, an underestimate of C is less
damaging to the convergence rate than an overestimate.

We now use the simplest estimate for k\, under
Dirichlet boundary conditions as given by Polya and
Szego (1951). On substitution into (1), the approximate
formula for p becomes
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3(1 + 1 • 003hA -1 ' 2)
(16)

for small h, where A is the area of the region.
The iterative process (4) and (5) described in Section 2

was programmed for the chosen problem with mesh
sizes h~l = 15, 20, 30 and 40 and run on the Sheffield
University Mercury computer, and the optimal jS sought
experimentally. The results for the case h~x = 20 are
shown in Fig. 1, with the accompanying results for
S.L.O.R. shown for comparison. The number of
iterations required to give a specified accuracy from a
given arbitrary initial solution is shown as a function of
fi, and the optimal j3 is clearly indicated in each case.
These experimental results were compared with the
results given theoretically by equation (16) and good
agreement was obtained for small h. These results are
given in Table 1 below. The divergence between experi-
mental and theoretical results becomes significant as h
increases in value, and supports the theoretical analysis
that h must be small. However, the present divergence
is appreciably greater than that found in the results for
S.L.O.R. (Evans (1962a)). However, the alternating
direction method consists of a double step process and
in the approximation to the analogous hyperbohc equation
the process is regarded as possessing time steps of 2h.
Hence we would now expect to find comparable
agreement on accuracy with twice the value of h as
that found previously for the S.L.O.R. method. This
is found to be true on scrutiny of the results given here
and elsewhere (Evans 1962a).

The application of the alternating direction line
iteration method to other regions with assorted mesh
sizes has been investigated experimentally and is given
in Evans (1962b).

Table 1

h
(MESHSIZE)

0-06667
0 0 5
0-03333
0-025
0 0 2

OPTIMAL /?
(THEORETICAL)

1-26
1-273
1-29
1-3 -
1-31

OPTIMAL /?
(EXPERIMENTAL)

1-29
1-3
1-305
1-307
1-31

By a similar approach, we can examine the alternating
direction line iteration method when it is applied to the
solution of 9-point finite-difference equations. This
application is quite important because of the smaller
truncation error of the 9-point formula. Consider the
equations:

J+l - 20<£Bn)] (17)
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Fig. 1

for (i,j = 1) to (/,/ = N — 1)
and each column / = 1(1)Â  — 1,

for (i=l,j
and each row/ = l(l)iV— 1.

The equations must be arranged similarly to (4) and (5)
for the solution process. Further, it can be easily
verified that when j8 is expressed as 10/7(1 + Ch) and
applied to equations (17) and (18) in turn, the analysis
leads to the hyperbolic partial differential equations

3<f,x

and

(19)

(20)

from which we can infer that, under similar assumptions
as those given earlier, the hyperbolic equation

3<f>x (21)

represents a finite-difference analogue of the alternating
direction line over-relaxation method when applied to
9-point finite-difference equations.

By a similar analysis we can deduce that the most
rapid convergence occurs when C = 3\/2A:1/14 and the
value of the exponent p governing the convergence rate
is ly/1kx.

Finally, the value of /? for the 9-point finite-difference
formula is
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10
7(1

(22)

for small h.
The iteration scheme (17) and (18) for h~l = 20 for

the chosen model problem is shown in Fig. 2 with the
corresponding result for S.L.O.R. given for comparison;
good agreement with the theoretical result given by
equation (22) was obtained for the optimal /?.

That the rates of convergence for both the 5-point
and 9-point formula are equal is given both by the
theoretical analysis p = 2\/2 ku and the experimental
results shown in Figs. 1 and 2. This rate of con-
vergence compares with the result p = 2k{ for the
S.L.O.R. method (Figs. 1 and 2) and p = ^2kt for the
S.O.R. method (Garabedian 1956). Hence, the alter-
nating direction line iteration method at the optimal j8
is a factor of \/2 faster than the S.L.O.R. method and
a factor of 2 faster than the S.O.R. method from this
theoretical analysis. Good agreement with these results
is obtained by comparing Figs. 1 and 2 with Fig. 2 of
Evans (1962a).

The work done per iteration must now be compared.
Since this has not been increased in going from point
to line methods, the methods discussed are directly
comparable and the gains from these more recent
methods (line and alternating direction line iteration)
are attainable.

The application of this alternating direction technique
to the 2-line and 3-line iteration methods of Varga (1962)
and Parter (1961) is fairly obvious, and can bring about
further increases in the convergence rates of these

iterative processes when used for the numerical solution
of self-adjoint elliptic partial differential equations in
two dimensions.
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