Series solution of certain Sturm-Liouville eigenvalue problems

By D. J. Green* and S. Michaelsont

The solutions of certain Sturm-Liouville eigenvalue problems are known in the form of orthogonal
functions ¢ ,(x), r =0, 1, 2, . . ., arranged so that the moduli of the corresponding eigenvalues
A, increase monotonically with r, i.e.

L, (x) = A,p(x)p,(x)
with the ¢,(x) satisfying appropriate boundary conditions.

The investigations described in this paper are an attempt to examine the conditions that must
be satisfied in order that the extended eigenvalue problem

LU + ¢()U = pp(x)U
(again with U satisfying appropriate boundary conditions) may be solved by expansion of U in
a series of the orthogonal functions &, (x).

Practically all orthogonal systems satisfy a 3-term recurrence relation. If the @, (x) satisfy
such a relation, this, together with the differential equations satisfied by the ¢,(x), may be used
to transform the extended differential eigenvalue problem to that of finding the eigenvalues of an
infinite symmetric tri-diagonal matrix. An examination is made of the recurrence relations
satisfied by the ortho-normal polynomials, and the conditions that must be satisfied by the coefficients
of the basic recursion in order that certain polynomial operators may give such matrices are

obtained. The results are applied to the Jacobi polynomials and Fourier functions.

A discussion of the convergence of the eigenvalues obtained by repeatedly bordering finite
principal submatrices of the infinite matrices follows. Several numerical examples are given, the
calculations being made on the University of London Ferranti Mercury computer.

1. Introduction

The general Sturm-Liouville problem is that of finding
non-trivial functions Ui(x), and corresponding para-
meters A;, which satisfy the differential equation

d d
2U = 5{p(x)7i’} +a(U = M@U (LD

in the range (a, b), and boundary conditions which
result in

[PCU U — UUDL =0 for isj (12)

where the dash indicates differentiation with respect to x.

The boundary conditions can take a variety of forms.
For example, if p(a) # 0 and p(b) = 0, homogeneous
boundary conditions

U @) + aUj(a) = 0
UL + BU) = 0 } (1.3)

where neither both the constants « and «’ nor both the
constants 8 and B’ are zero, may be required. Alter-
natively, if p(a) = p(b) =0, U, and U; must remain
bounded at both x = @ and x = b.

Lanczos (1950) has suggested a method by which the
analytical solution of the general problem may be
obtained. His technique, however, involves finding the
Green’s function K(x, 7) of the operator .#. This is
available in closed form in comparatively few cases.
Further, the iteration process requires repeated integra-
tions which may go beyond our analytical facilities.

The solution of certain problems has been obtained
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in the form of orthogonal functions ¢,(x),r =0, [,2,.. .,
arranged so that the moduli of the corresponding eigen-
values A, increase monotonically with r, i.e.

L¢(x) = A,p(x),(). (1.4

The purpose of this investigation is to examine the
conditions that must be satisfied so that the extended
eigenvalue problem

LU + g,(x)p(x)U = pp(x)U (1.5

(with the same boundary conditions as those associated
with the operator .#) may be solved by expansion of U
in a series of the orthogonal functions ¢,(x).

It will be shown that for certain operators the problem
(1.5) can be reduced to finding the eigenvalues of an
infinite symmetrical tri-diagonal matrix. For some of
these matrices the sequences formed of corresponding
eigenvalues of finite leading principal sub-matrices are
very convergent.

2. Reduction to tri-diagonal form

Suppose the ¢,.(x) are ortho-normal functions, being
solutions of the eigenvalue problem

LU = Ap(x)U .1
in (a, b) with appropriate boundary conditions.
For such functions

b
[ P06, ox)ex = 8, @2
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Eigenvalue problems

where §,, is “Kronecker’s symbol”;

Spq=1 (P"_‘q)
=0 (@#9.

Assume a solution of (1.5) of the form

U= 3 abursd @3)

where k is a positive and n a non-negative integer.
If

Ul = §0 a£I)¢kr+ n(x) (24)
U, = ;o a£2)¢kr+ (%) 2.5
A, + B, A,
A, Aetn + Bign Agsn

are two solutions corresponding to the distinct eigen-
values A = pu, and A = p, respectively, then

b © ©
[ #0) Z e B o Obursa)dx =0

M8

Do =0 (2.6)

r=0
i.e. the o are orthogonal vectors.

For orthogonal functions (and especially orthogonal
polynomials) recurrence relations of the form

q2(x)¢n = An¢k+n + Bn¢n
() birsn = Airs n¢k(r+ D+n
+ Birtn®rrsn T ChrsnPicr— 41
r=1,2,3... 7
where the 4, B,, and C, are independent of x, exist for
certain g,(x).
In fact if the orthogonal functions are normalized,

the recurrence relations (2.7) are symmetric and take the
form

qZ(x)‘i’n = An¢k+n + Bn¢n

9o X)Prrtn = Agrs APr(r+ 1)+ n
+ BirinPrrin + Aktr— 1)+ nPrir— Dt 5
r=1,213... (2.8)

The substitution of (2.3) into (1.5) and the application
of relations (2.1) and (2.8) gives

323

P(x) zo arAkr+ n¢kr+n + P(x) 20 ar(Akr-{- n¢k(r+ D+n
r= r=
+ Bkr+ n¢kr+ n + Ak(r— N+ n¢k(r— 1)+ n)
©
= #P(x) go ar¢kr+ ne

Equating the coefficients of ¢,,.., leads to the infinite
tri-diagonal matrix eigenvalue problem

(An + Bn)do + An“l = pxo
Ak(r— D+ n%r—-1 + (Akr+n + Bkr-i— n)ar + Akr+ n%r+1
= po,
r=1,2,3,...

i.e. the problem of finding the eigenvalues of the infinite
symmetric tri-diagonal matrix

— ] (2.9)
Ak(r— 1D+ n Akr+n + Bkr+n Akr+n J

If series (2.3) is truncated at r = m, and substituted
in (1.5), a finite square segment of the infinite matrix
(2.9) is obtained. It will be shown in Section 6 that if
the eigenvalues of this finite segment are calculated, and
the process repeated with r=m 41, m 4 2, . . ., then
the sequence of values obtained for corresponding
eigenvalues converges very rapidly for certain operators.

3. Orthogonal polynomials

The first class of orthogonal functions considered
is the orthogonal polynomials. ({See, for example,
Jackson (1941) and Szegd (1939).] These satisfy, when
normalized, recurrence relations of the form

XPo = aop: -+ bodo
xqsp = ap¢p+l + bp¢p + a,- 1¢P—1
p=12,3,...

where ¢, is a polynomial of precise degree p.

The problem of what operators g,(x) will give [using
(3.1)] recurrence relations of the form (2.8) and hence a
symmetric tri-diagonal matrix eigenvalue problem is
now considered. In this connection it should be noted
that the addition of a constant to g,(x) merely changes
the eigenvalue p by that constant, and so is omitted in
the discussion.

@ gx(x) = Bx
g2(x)po = Bi(@o$1 + bodo)

9:(x)¢, = Br@pbpsr1 + by, +a, 19,-1)
p=1273,...

This is of the form (2.8) with k =1, n = 0.

3.1

(3.2)
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Thus the substitution

U= 3, 2 33
will transform
LU + Bixp()U = pp(x)U (.4)

to an eigenvalue problem of type (2.9).
(®) gx(x) = Box? + Byx
92X, = B2a,a, 1 19,42+ {(b,pr1 +0,)B2+ Bilb,ora
+{@ + by + a;_ DB + Piby}é,
+ ap— l{(bp + bp— I)BZ + ﬂl}¢p—-1
+ Baay— 18,29,
r=01,2 ...
where a; = ¢, = 0 when s is a negative integer.

There are two ways in which (3.5) can reduce to (2.8).
Clearly kK = 2, but n can be zero or unity.

(3.5

For n = 0 the following set of equations has to be
satisfied

bp+bp+l=—181//32 P=O: 1, 2’ (36)
Thus if condition (3.6) is satisfied the substitution
U= —EO a,¢2,(X)
will transform
LU + (Bx* + Bix)p(x)U = pp(x)U  (3.7)

into a matrix eigenvalue problem of type (2.9).

For n = 1 the conditions to be satisfied are identical
with those for » = 0, and the substitution

U =r§) “r¢2r+ 1(%) (3.8

will also convert (3.7) to an eigenvalue problem of type
2.9).

(© g2(x) = B3x3 + Bx* + Bix

G2(X)b, = B3a,a,4 10,4 2$p13 + 0,14
{BS(bp+2 + bp+l + bp) + :32}‘)511+2
+ ap{BB(a127+l + by i(bpi1 + by
+a + bl +a;_ )+ Bybyr1 +b,) + Bild,en
+ {Bx(@(bps1 +b,) +b(a; + b5+ aiy)
+ a2 y(b, + b, 1) + By(a} + BE +ai_y)
+ Blbp}‘l’p +a,- 1{B3(a§ + bg + ag—l
+ bp— l(bp + bp— I) + 03—2)
+ Baby + b, 1) + Bi}b,—1
+a,_1a,-2fBsb, +b,_1 +b,_2)
+ Batpp—2 + Baap_ 10,20, 3$,_3
p=0,12 ...
where a, = ¢, = 0 when s is a negative integer.

3.9
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Clearly if (3.9) is to reduce to a recurrence relation
similar to (2.8) then k = 3, and possible values of n are
0, 1, and 2.

For the appropriate terms of (3.9) to vanish

Bsbys2 +bpry +bp) + B =0
Bsb, +b,_ 1 +b,_5) +B,=0
Bs{ady +a2+ai_ + B2+ b, by + b))}
+ Babps1 +b,) +B1=0
33{03 -+ 05—1 +ai,+ bﬁ + bp— l(bp—l + bp)}
+ Bab, + b, )+ B =0
p=n+3n+6n+9, ... (3.11)

and, in addition to (3.10) and (3.11)

(3.10)

Forn=20

Bs(b; + by + bg) + B>

=0
Bs{a} + af + b5 + by(b, + bo)} } (3.12)
+ Baby +bg) + B =0

Forn=1
Bilbs + by + by) + By
BA@ + by, + by) + @ + b + ]

=0

+ Balby + b) + 1 = 0} (3.13)
Bsla} + aj + b + bo(by + bo)] J—
+ Ba(by +bo) + B =0} .
Forn=2
Bibs + b3 + b2) + B, =0
Bsla} + a + a} + bs(bs + b)) + ]
+ Babs + b)) + B =0 (3.14)
Bsla? + a} + aj + by(by + by) + b] )
+ Baby + b)) + B =0
Bi(by + by + bo) + B, =0
These conditions simplify in special cases.
Forn=0
Taking all the &, to be equal, and the a, to be equal
forp=1,2,3,... reduces the equations to be satisfied
to
bp=—32/3ﬁ3 p-—_—o’ 1’21"'
al = a3f2 rp=0,1,2...% (3.15
a§ = 2(B3/3B5 — Bi/Ba)/3.
Forn=2
Again taking all the b, to be equal, the a, to be equal
forp=3,4,5, ..., and a, = a, reduces the equations
to be satisfied to
bp = _132/333 }
3.16
a = (BB3B — BB p=0,1,2,....J OO
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Forn=1
Taking the b, to be equal forp = 1, 2, 3, .. ., and the
a, to be equal for p = 2, 3, 4, . . . reduces the equations
to be satisfied to
b, = —B,/3B; p=123... (.17
a=(BBR/— BB p=234,... (.18)
a} + a5 = 2[B3/3B5 — Bi/Bsl/3 (3.19)

a} +ag = 2B3/9B; — b5 — 2Babo/3Bs — Bi/Bs.  (3.20)
Equations (3.19) and (3.20) require
bo = —Baf3B5 + [B3/9B5 — Bi/3B:]'>

Thus if appropriate conditions are satisfied for
n =0, 1, 2, the substitution

3.21)

U =3 ain) (322)

will transform the differential eigenvalue problem
LU + (B3x3 + Bpx? + Bix)p(x)U = up(x)U  (3.23)

into an infinite matrix eigenvalue problem of type (2.9).
The results of this Section will be applied to specific

orthogonal polynomials, viz. the Jacobi, in Section 4,

followed by a discussion of the Fourier functions.

i BlbO

Biao -
Biao —(x+ B +2)+ Bib, Bia

4. The Jacobi polynomials

The Jacobi polynomials P2% &(x) are solutions of the
eigenvalue problem

d du
= — x)2+1 B+1_ "
LU d——{x (1 — x>+l + x)B+ I

=Xl —x)(1 +xPfU  «, B> —1 (4.1)

. du
in the range (—1, 1) U and ™ remaining finite at the

end points of the range.
The eigenvalues are

Ap=—p(p+a+B+1)

The recurrence relations satisfied by the normalized
polynomials are

XP3® = aoPEACX) + boP5*
xPp3(x) = a,Ppfy(x) + b,PpP(x) + @, P (%)

p=1,2,3... 4.2

Bia,_;
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where
_ 2 (« + DB+ _ _B—«
"°—a+ﬁ+2"/[ «+p+3 ] KR R
2
a

e Ey ES TR

\/[(a+l3+p+1)(17+1)(a +p 4+ D(B +p+1)]
(c+B+2p +D)(x+B+2p+3)

b B? — o2
o (a+B+2pX e+ B+2p+2)
p=123... 4.3
The extended eigenvalue problem is
LU + qx(x) p(x) U = pp(x)U 4.4

with the same boundary conditions as those of the
operator #. Operators ¢,(x) are considered as in
Section 3.

(@ g:(x) = Bix
Clearly the substitution

U= «,P8x) (4.5)
r=0

will convert the differential eigenvalue problem (4.4) to
the problem of finding the eigenvalues of the infinite
tri-diagonal matrix

(4.6)
—r(r + o+ B+ 1)+ Bib,

where the a, and b, are given by (4.3).

The off-diagonal elements of (4.6) are bounded while
the diagonal elements increase in modulus approxi-
mately as r2. The convergence of the eigenvalues
obtained from the principal sub-matrices is discussed in
Section 6. Inequalities (6.18) and (6.19) give very good
indications of the rate of convergence to be expected.
The eigenvalues obtained from the principal sub-
matrices for certain values of B, « and B are given in
Tables 7.1 to 7.4.

(®) g2(x) = Byx* + Bix
Condition (3.6)

b, +byy=—B/B p=0,12...
is satisfied only if
b,=0 rp=012...
ie. = 4.7)
B =0. (4.8)
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Eigenvalue problems

Provided (4.7) and (4.8) are satisfied, the substitution

U= 3 «P3:%x) .9
r=0

will convert the differential problem (4.4) into the

infinite matrix eigenvalue problem shown in (4.10) below

(r+ D +2«+1)
where a, = \/[(2,. + 2 + DQRr 4+ 2« + 3)]

The off-diagonal elements are again bounded while
the diagonal elements increase in modulus approxi-
mately as 4r2. The convergence of the eigenvalues of
this type of matrix is discussed in Section 6(b). In-
equalities (6.20) and (6.21) indicate the rate of con-
vergence to be expected. Numerical examples are given
in Tables 7.5 and 7.6.

(©) g2(x) = B3x* + Box? + Bix

Initially expansions involving n =0 and n = 2 are
considered. To satisfy the b, conditions of (3.10),
(3.12) and (3.14)

b, = constant = 0 p=20,1273,...
so that
a=f 4.11)

With n = 0 conditions (3.11) and the second of (3.12)
can be satisfied only if

In addition B; and B; must be chosen so that

B1 = —3Bs/4. 4.19)

Thus if (4.11), (4.12), (4.13) and (4.14) hold, the sub-
stitution
U= Y «P;l% —12x) .15
r=90
reduces (4.4) to the problem of finding the eigenvalues
of the infinite tri-diagonal matrix (4.16) below.

The off-diagonal elements are constant while the
diagonal elements increase in modulus as 9r2. The
matrix is similar to that discussed in Section 6(a). The
eigenvalues converge very rapidly.

With n = 2 the situation is identical with that dis-
cussed above except that conditions (3.14) are satisfied by

a=1/2 (4.17)

i.e. the Chebyshev polynomials of the second kind.

Thus, subject to conditions (4.11), (4.12), (4.14) and
(4.17), the substitution

U= Y oP%2(x) (4.18)
r=0
reduces (4.4) to the problem of finding the eigenvalues
of the infinite tri-diagonal matrix (4.19) below.

(4.19) is of similar type to (4.16) and the remarks
made about the convergence of the eigenvalues of matrix
(4.16) apply equally well to those of (4.19).

Returning to the expansion involving n = 1, to satisfy

= —1/2 (4.13) the b, conditions of (3.10) and the first of (3.13)
i.e. for the Chebyshev polynomials of the first kind. b, = constant = 0 p=123,... (4.20)
:320% B2asa,
Baaga;,  —2Qa+4-3)+ By +4a2)  Baas
- _ _ . (4.10)
l —PBaaz—2ay,— 1 —2rQ2r+2a+ 1)+ By@d, +ai— 1)  —Paa25 41 J
[- 0 B3/4+/2 ]
Bs/4+/2 -9 Bs/8
— — — (4.16)
Bs/8 —9r? Bs/8
( —8 B8 -
Bi/8 =35 B8
- —_ — 4.19)
B8  —@Br+2)(3r +4) Bs/8
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so that
a=+B 4.21)

B, = 0. (4.22)

If (4.21) and (4.22) are satisfied, conditions (3.11) and
the second of (3.13) can be satified only if either

a=—1/2
{ g— 1;2 (4.23)
or
a= 1/2
{B — 1. 4.24)
In addition B8; and B; must be chosen so that
By = — 3B,/4. (4.25)

The third of conditions (3.13) is also satisfied.
Thus subject to conditions (4.22), (4.25), and either
(4.23) or (4.24) the substitution

U= o P38 (%) (4.26)
r=0

reduces (4.4) to the problem of finding the eigenvalues

of the infinite tri-diagonal matrix

Bs/8 —20  By/8

(4 23) and (4.24) requiring the positive and negative
signs respectlvely

This matrix is of similar type to (4.16) and the com-
ments made about the convergence of the eigenvalues of
(4.16) apply equally well to those of (4.27).

Thus the only Jacobi polynomials which give infinite
symmetrical tri-diagonal matrices when used with a
cubic operator g¢,(x) are those for which either
a=f==41/2 or a = —f = +1/2. The effect of a

polynomial operator g,(x) on these Jacobi polynomials
is discussed in the following sub-sections.

"—2 + B3/8 Bs/8

(d) Chebyshev polynomials of the first kind T (x)

It has been shown that the Chebyshev polynomials of
the first kind T,(x), i.e. the Jacobi polynomials for which

«=pf=—1/2, (4.28)

lead to symmetric tri-diagonal matrix eigenvalue prob-

lems for certain polynomial operators ¢,(x). The effect

of a general polynomial operator is now discussed.
The basic recursion of the normalized polynomials is

xTo = T)/v2
xT) = Tyf2 + Tof+/2 } (4.29)
XTp=(Tp+l+T—l)/2 p=2s3’4;~--

327

The third of (4.29) can be written
= (E+ E-NT,/2

where E is the displacement operator.
Suppose ¢,(x) is a polynomial of degree m, i.e.

g2(x) = Bo(x™ + B x™ ' + ... +B1x),  (4.30)
then
E 4+ E-! E + E-tym-!
q2(x)Tp = 52{(—7——) Bm— l( 2 )
E+ E-!
48— + )}Tp. @.31)
For (4.31) to reduce to a 3-term recursion
Bn-1=Bm-3=...=0 (4.32)

and the non-zero B; must be the coefficients of powers
of cos § in the expansion of 2—m+1 cos m@ viz.

m even
g — (— D" mi(m2 — 22)(m? — 4%) . . . (m? — (i — 2))
i 2n=1(;1)
4.33)
_ . @.27)
Bs/8  —QGr+D@Br+2 B8
m odd
g — (= D2 mim? — 12)(m2 — 32) ... (m* — (i—2)?)
' 2711 :
With these B;, (4.31) becomes
9:()T, = Bof2=™(E™ + E-™) + b}T,
= Bl{z—mTp+ m + pr + 2_mTp— m} (4'34)
where b = constant.
(4.34) requires
k=m (4.35)

and » must be chosen so that the initial 2-term recursion
takes the correct form.

The choice of the B; in (4.32) and (4.33) means that
g,(x) is a multiple of the normalized mth Chebyshev
polynomial or differs from one by a constant, i.e.

92(x) = B227"v/(2m)T,(x) + Bi. (4.36)

With n = 0 the recursions take the required form, viz.
G2(x)Tg = BT /27"~ 42 + BT,
0T = B Toml2" + BT + BoTof27=12

q2(x)Tmr = BZ{Tm(r+ 1 + Tm(r— 1)}/2m

+ BT, r=2,3,4,...

(4.37)
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Thus, provided g,(x) is of form (4.36), the substitution

U= i o, T, () (4.38)
will reduce
d dU 2 (OU wU
(VO =) + Vi~ vi—=n &

to the problem of finding the eigenvalues of the infinite
tri-diagonal matrix shown in (4.40) below.

Again (4.40) is of similar type to (4.16) and the remarks
made about the convergence of the eigenvalues again
apply.

(e) Chebyshev polynomials of the second kind T}(x)
These are the Jacobi polynomials for which
and the basic recurrence relations satisfied by the
normalized polynomials are
XT(;' = Tl*/2
XTf =T}, + T )2 p=1,23,...
The situation is identical to that described in the
previous Section, and for a general polynomial operator
q,(x) of degree m to give the 3-term recursion, conditions

(4.32), (4.33) and (4.35) must be satisfied. The desired
initial 2-term recursion is obtained if

(4.42)

n=m—1. (4.43)
Recursions (4.37) become
@) T_ = BT 1/2" + cTy_
q2(x)TrTn+ m—1= BZ{T(:"-D— Dm+m-—1 (444)

+ T(‘;‘~ )m+m— l}/zm + 4 rfn+m——1
r=1,23 ...

where ¢ is a constant, equal to zero if m is odd. Thus
provided g,(x) satisfies the above conditions the sub-

U= anrT(r-}-l)m—l(x) (4.45)
will reduce
d dau
- — 2)3/27 — xytj2
a4 @ - vy
= u(l — x)H2U  (4.46)

to the problem of finding the eigenvalues of the infinite
tri-diagonal matrix shown in (4.47) below.

Remarks made about the convergence of the eigen-
values of (4.16) also apply to those of the above matrix.

(f) The Jacobi polynomials « = —1/2, B = 1/2

The basic recurrence relations satisfied by the
normalized polynomials are

xPy = (P + Py)/2

xP, = (Pyer + Pp_ )2 (4.48)

p=1,2,3,...}

The situation is again similar to that described in
Section 4(d). For a general polynomial operator g,(x)
to give the required 3-term recursion, conditions (4.32),
(4.33) and (4.35) must be satisfied. The required initial
2-term recursion is then obtained if s is odd and

n=(m— 1)/2. (4.49)
The recursions for g,(x)P,(x) then take the form
GLX)P(m—1y12 = Bo(PGm— 1312 + Pim—1y12)/2"
3Pz, 4 Dm—1j2 = gz(P((2r+ Hm—~1)/2 (4.50)

+ P2 ym—1)12)/2"
r=1273,...

Thus provided g,(x) satisfies the above conditions the
substitution

stitution v :r§0 &, Pt ym—1y12(%) 4.51)

g e :

Ba/2m 112 —m? 4 B, Ba2m
— — (4.40)
Ba/2m —m?r? 4 B, Ba/2m
- - —
—(m*—1+c B2—m
B2~ —@m?*— 1) 4+c B2-m

- - = (4.47)

Bam  —{o+)Pm— 1} e B2 J
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will reduce
d , du 14+ x\12
a{(l — )1+ x)”zd—x} + qz(x)(l—_); v
1 4+ x\1/2
= ,L(l U (4.52)

to the problem of finding the eigenvalues of the infinite
tri-diagonal matrix

B2—m — (m? — 1)/4

2——m
322(_'" %

—Om? — 1)/4 B2—m

Comments made about the convergence of the eigen-
values of (4.16) also apply to those of the above matrix.
(g) Jacobi polynomials o = 1/2, § = —1/2

The analysis follows an identical pattern to that

described in the previous sub-section, but the first of
recursions (4.48) and (4.50) are replaced, respectively, by

XPO = (Pl -_— Po)/2 (4.54)
45X P nyj2 = B2(Pam— 1312 — Pim—112/2™  (4.55)
and equation (4.52) by

d du
fadl 12(] — )32
dx{(l + )1 — x) a’x}

1 — x\ 12 1 — x\ /2
+ Qz(x)(m) U= ,L(l——x) U. (4.56)
The resulting infinite tri-diagonal matrix has the same
elements as (4.53) except that the first becomes
—B2=™ — (m? — 1)/A.

5. Fourier functions

The next orthogonal functions discussed are the
Fourjer Sine and Cosine functions which are very closely
related to the Chebyshev polynomials, and the con-

—12 B1/2
B2 =22 B2
clusions are equivalent.
(a) Sine functions
The Fourier Sine functions
¢, (x) =+/(@2/m)sinpx p=1,2,3,... (5.1
G
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are an orthonormal set in the range (0, =) being solutions
of the eigenvalue problem

daxu

LU=""=2A 5.2

v dx? v 2

with the boundary conditions which may take the form

Ui)y=0
: 53
. . (4.53)
B2—m  —((@r +1’m*— D4 B2

and with eigenvalues

A,=—p* p=123,... (5.4)

The recurrence relations satisfied by the ¢ ,(x) are

(cos x)¢y = ¢,/2
(cosx)p, = (hp11 + b2 p=2,3,4,... } S

The extended eigenvalue problem is

LU+ ¢0)U = pU (5-6)

with any boundary conditions for which the ¢,(x)
satisfy (1.2).

() g2(x) = Brcosx

This is the Mathieu problem discussed in this con-
nection by Mayers (Fox, 1961).

Clearly the recursions are of the form (2.8) with k = 1,
n = 1, and the substitution

U= 3 abri® (5.7)

will reduce (5.6) to the problem of finding the eigenvalues
of the infinite tri-diagonal matrix

(5.8)

B2

—r? Bi/2

The convergence of the eigenvalues obtained from the
principal sub-matrices of (5.8) is discussed in Section
6(a) where expressions (6.13) and (6.14) give very good
estimates of the rate of convergence to be expected.
Numerical examples are given in Tables 7.7. and 7.8.
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Eigenvalue problems

(i) g,(x) = polynomial of degree m in cos x

The situation is identical to that discussed in Section
4(e), i.e. the Chebyshev polynomials of the second kind.
In order that g,(x)¢,(x) should give the required
recursion, the operator g,(x) must either be a multiple
cos mx or differ from one by a constant, i.e.

g2(x) = B, cos mx + B, (5.9
so that

q2(x)¢m = BZd’Zm/Z + Bl¢m
q2()bmr = BoAbmr+n + Pmir—1}2 + Bidbmr (5.10)
r=2,3,4,....

The substitution

U = ’éo ar¢mr+ m(x)

will then reduce (5.6) to the problem of finding the
eigenvalues of the infinite tri-diagonal matrix (5.12)
below.

The eigenvalues obtained from the principal sub-
matrices of (5.12) will converge in an identical manner
to those of (5.8).

(5.11)

(b) Cosine functions
The Fourier Cosine functions
b, (x) = 4/2[m)cospx p=1,2,3,...

are an orthonormal set in the range (0, =) being solutions
of the eigenvalue problem

dxu

$=_=A .14
U=22 =2 (5.14)

with boundary conditions which may take the form

and with eigenvalues
A,=—p* p=0,12.... (5.16)
The recurrence relations satisfied by the ¢ ,(x) are

(cos X)pp = ¢1/v/2
(cos x)¢; = $2/2 + o/ /2 (5.17)
(COSX)¢F=(¢p+1 +¢p—1)/2 P=2, 3,4,....

The extended eigenvalue problem is
LU+ g(x)U = pU

with appropriate boundary conditions.

(5.18)

() gx(x) = By cos x

Clearly the recursion obtained by operating ¢,(x) on
é,(x) is of the form (2.8) with k = 1, n =0, and the
substitution

U= foa,¢,(x> (5.19)

will reduce (5.18) to the problem of finding the eigen-
values of the infinite tri-diagonal matrix (5.20) below.
The comments made about the convergence of the
eigenvalues of (5.8) apply equally well to those of (5.20).
Numerical examples are given in Tables 7.9 and 7.10.

(ii) g,(x) = polynomial of degree m in cos x

As in Section 5(a) (ii), in order to obtain the appro-
priate recurrence relations when g,(x) operates on ¢ ,(x),
q»(x) must reduce to form (5.9). The recursions then
take the form

92:(X)$o = Bapm/ V2 + Bio
q2(x)¢m = /32(¢2m/2 + ¢0/'\/2) + Bl¢m

(5.21)
U’(O) =0 (5 15) q2(x)¢mr = BZ(¢m(r+ 1) + ¢m(r—l))/2 + Bl‘l’mr
U'(ﬂ')———O} ’ r=213,...
[ By — m? B2/2 T
B2/2 By — 4m? Ba/2
— — (5.12)
Ba/2 By — r’m? Ba/2
K BiIv/2 -
Bi/v2 —12 Bi/2
Bi/2 =22 B2
o o (5.20)

B2 —r B2
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and the substitution

w

Z “r¢mr(x)
0

r=

U= (5.22)

will reduce (5.18) to the problem of finding the eigen-
values of the infinite tri-diagonal matrix (5.23) below.

Again the comments made about the convergence of
the eigenvalues of (5.8) apply to (5.23).

6. Convergence of the eigenvalues

(a) First consider the infinite symmetric tri-diagonal
matrix (6.1) below, where ¢ is a constant.

Bounds are now obtained for the difference between
the eigenvalues of the matrix of the first » rows and
columns of (6.1), and those of the matrix of the first
(n + 1) rows and columns.

Consider the matrix S, (see (6.2) below).

Let p, be an eigenvalue of S, and x the corresponding
eigenvector normalized to have Euclidean length unity,
i.e.

Then

x S, ge,
Sns1 [O:I = [qer

atllel
A
- ”"B] + [qgn] ]

where e, is the last column of the unit matrix of order
n and «, is the last element of x.

Wilkinson’s application of Rayleigh’s Theorem
(Wilkinson, 1961) shows that at least one eigenvalue
fno lies in the interval

t (6.5)

|:u'n - #’n-%-ll < lqanl' (66)

If the Gershgorin circles of S, (Gershgorin, 1937) are
examined, it is clear that they are centred at —I1,
—4, ..., —s?, ..., —n? and have the same radius 2|q|
except the first and the last which both have radius |gj.
Clearly if n is large enough, a posttive integer r can be
found such that all circles centred to the right of —r?
overlap, while the one centred at —r? and those to the

Su¥ = P 6.3) left are disjoint. In fact r is the least integer such that
xTx = 1. 6.4) 2r — 1 > 4lq|. 6.7
[ B Ba/v/2 ]
Balv2 —m? + By Ba/2
Ba2/2 —m?2% + B, Ba/2
- - T . _ _ (5.23)
B./2 —m¥r? + B B2/2
[~y - |
—4 q
— — — 6.1)
g —s g
S, = ( —1 q T
qg —4 q
— — — (6.2)
g —s& q
| q —n? |
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If p® is the ith eigenvalue of S, arranged in order of
descending algebraic value,

pP > —(r — 1) —2|q| > —r* + 2|q| (6-8)
i=r—1,r—2,...,1
pP > —i? —2|q| > —( + 1)* + 2|q| (6.9)
i=nr,r+1,...,n

Now consider the equations satisfied by certain of the
elements of x

gog_ g — (u® + Do, + qorgyy =0
qos — (F‘g) + (s + l)z)as+l + qagy = 0

qo,_1 — (I"'Szi) + nz)an =
First assume ¢ > 0 and i <r, and choose «, >0,
then using (6.8)

(6.10)

o, Ly g < Up_g.. . <o <1 (6.11)
and
< q q qr—1
T R T R e ) e A R
-4 q q q
n—r2 (=122 +1D2—rt" g
6.12)
g ~7(2r)!
%n < n+nln—nt
Substituting in (6.6) gives
. qn—r+l(2r)!
@ _ D D SR, i A,
| — pPal < YR (6.13)
i=r—1Lr—2,...,1
Similarly
q"~'(2i + 2)!
O _ L, ®
b — Bl <G Fym—izn ©9

i=r,r+1,...,n—1.

For g < 0 the same argument gives identical expres-
sions except that ¢ is replaced by |g].

WD — 8| <

It shouid be noted that inequalities (6.13) and (6.14)
hold for the eigenvalues w,, ,, of matrix S, , since

x S.x
Sll+m[:0:| = [qa’]
0
qop
0].

0
= pa[*] +
0
The sequences of corresponding eigenvalues obtained
from the matrices S, S,4 |, . . . satisfy Cauchy’s principle
of convergence, i.e. corresponding to any given positive
number e there exists an n such that

| — ufml <e
for all positive integral m. Thus the eigenvalues con-
verge and the limit lies in the range

p E |ge|.
Inequalities (6.13) and (6.14) give very good guides to
the order of matrix to be used to obtain a specified
accuracy.
However, when the eigenvalues and eigenvectors of S,

have been calculated, better bounds than those given by
(6.13) and (6.14) can be obtained. Now u{’ is the

Rayleigh quotient for vector l:g:l and matrix S, ;.
Assuming that there is only one eigenvalue u{®), ; of
S, which satisfies (6.6) while all others satisfy -

Jj#i (6.15)

then the application of Wilkinson’s “improved” bound
(Wilkinson, 1961) gives the inequality

|1 — 1 > a

n

. g2l
Y
a(l T )
Numerical examples of the eigenvalues of matrix (6.2)
are given in Tables 7.7. and 7.8 with ¢ = B,/2.

e — widal < (6.16)

(b) Jacobi polynomials

If the above technique is applied to matrix (4.6), the
following inequalities are obtained.

IBlln_r+lanan—l ... Qa,

{fn+a+B+D)—r+a+B+DHE—Dn+a+p—rr+oe+B+D}...

{r+Dr+a+B+2)~rr+a+ B+ 1}

i=r—1,r—2,...,0, (6.18)
[ — p | <
[Bil"fa,an_ - - -a;4
Mo F e FPFD—GF DG 2Fa TPy GFD+3Ta+P-GT DG T =T B+)
i=rr+1,r+4+2,..,n—1, (6.19)
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where r is the smallest positive integer such that significant digits that have changed are given sub-

_ _ sequently. The row marked “R” contains the most
r+at B—Bub,~b,_)>|Pil@ + 28,1 a0 significant digits that have been repeated.

Clearly the eigenvalues obtained by repeated bordering It should be noted that when constants B8; appear
of the principal sub-matrix of (4.6) will converge very only in the off-diagonal elements, the eigenvalues are
rapidly, and (6.18) and (6.19) give good estimates of the unaltered if B; is replaced by —§B;, so that negative
order of matrix required to give a specified accuracy. values of B; were not considered in these cases.
Numerical examples are given in Tables 7.1 to 74. A The eigenvalues were obtained by the method of
numerical comparison of inequality (6.18) and the bisections described, for example, in Modern Computing
equivalent of (6.16) for one of the eigenvalues of Methods and are given to an accuracy
Table 7.4 is given in Table 7.12.

The corresponding inequalities for matrix (4.10) are X< p< X

| — py <

|Ba|" =" 8300001820 282p— 1 - - - Q25,44
2n2n T 22 T 1) — 26 + D@ + 22 + 3)} ... 20 + D@2 + 20 £ 3) — 2r2r + 22 + 1)}
i=r—1,r—2,...0. (6.20)
[ — ud | <
|Bol™ 02,0504 1 - - . Q14282143
Gn2n ¥ 22 + 1) — 26 + D@ + 22 F3)) ... 20 + 22 + 22 5) = 2G F D@ + 2« F 3))
i=rr+4+1,..,n—1 (6.21)

where r is the least positive integer such that
24r + 20 — 1) + By(a3,_2 + a3, 3 — @, — @B, 1) > |Bal(a2,02,4 1 + 282,205y + G242, 3).  (6.22)

Again the eigenvalues obtained by repeated bordering where
of the principal sub-matrix will converge very rapidly. |21 — Xo| < 10~7|u| + 10-17,

. Numerical examples are given in Tables 7.5 and 7.6. The eigenvectors were also calculated, normalized so

that the largest element is unity, but space prevents their
inclusion in full in the paper. However, Table 7.11 gives
a typical example, the elements being given in floating-

7. Numerical examples point form.

The following tables give the eigenvalues of some of The calculations were made using the University of
the matrices discussed in the previous Sections, n being London’s Mercury computer.
the order of the matrix. The eigenvalues of the lowest A comparison of the theoretical rate of convergence
order matrix, and the additional eigenvalues obtained and the actual rate for one of the eigenvalues of Table 7.4
after each bordering are given in full, but only the is given in Table 7.12.
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Table 7.1
Jacobi polynomials (1/2, —1/2) Matrix (4.6) a=172 B = —1/2
Bi= -3
n p pu® p@ e @ e '
4 2-090978 —2-034822 —6-19004 —12-36612
5 478 8092 09843 —20-27716
6 7 85 426 05859 —30-22280
7 4 636 03886 —42-18619
8 753 02765
9 680
R 2-090978 —2-034477 —6-18085 —12:09424 —20-05636 —30-03753 —42:02
Table 7.2
Bi=3
n ©© pw® u® e w® e u(®
4 —0-053627 —2-866793 —6-21341 —12-36617
5 570 402 0438 09849 —20-27716
6 0 2 432 05859 —30-22280
7 0 636 03886 —42-18619
8 753 02765
9 680
R —0-053570 —2-866400 —6-20432 —12-09430 —20-05636 —30-03753 —42-02
Table 7.3
Legendre polynomials (a) Matrix (4.6) a=p=20
Bi=3
n o p u@ pu® @ e i
4 1-092649 —2-478415 —6-23732 —12-37691
5 70 7976 2785 10528 —20-28156
6 4 78 101 06086 —30-22505
7 099 5860 03984 —42-18749
8 59 850 02814
9 729
R 1-092670 —2-477974 —6-22778 —12-10099 —20-05859 —30-03850 —42-02
Table 7.4
Bi=17
n pn© p p@ pd p® u® u®
4 3-778196 —2-503256 —7-38575 —13-88919
5 80119 459438 19126 —12-68135 —21-44808
6 51 8198 8190 58076 —20-38204 —31-17726
7 83 74 7812 2390 —30-24687 —42-99134
8 10 292 1099 17263
9 56 4908
R 3-780151 —2-458183 —7-18174 —12-57810 —20-32292 —30-210 —42-1
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Table 7.5
Legendre polynomials (b) Matrix (4.10) a=8=0
B= -3
n p® v p@ e p@ u® pw®
4 —0-879934 —7-64932 —21-53565 —43-53510
5 4 1619 —73-5242
6 9 093 —111-5183
7 060 —157-5147
8 042
R —0-879934 —7-64932 —21-53564 —43-51619 —73-5093 —111-5060 —157-5
Table 7.6
,‘32 =3
n pn© p® p® e u® e &
4 1-144328 —4-531027 —18-49641 —40-51689
5 40 49799 —70-5136
6 4988 —108-5115
7 4992 —154-5099
8 4994
R 1-144328 —4-531027 —18-49640 —40-49799 —70-4988 —108-4992 —154
Table 7.7
Fourier sine functions Matrices (5.8) and (6.2)
Bi=6(@=23)
n pn® p e u® p® u® u(®
5 1-140882 —4-348921 —9-50340 —16-33234 —25-95622
6 5 813 152 28980 20801 —36-77928
7 2 0 17 18297 14213 —49-67631
8 71 2628 10309
9 16 09248
10 : 2
R 1-140885 —4-348812 —9-50150 —16-28917 —25-18271 —36-12616 —49-0924
Table 7.8
Bi=14@="7
n p(© p e e u® u® u®
5 6-38954 --2-807643 —10-74138 —18-32756 —29-51295
6 9041 781119 56691 —17-63852 —26-53430 —39-86956
7 3 0173 5648 56983 04915 —37-05434 -—52-3805
8 56 21 721 1770 —36-71019 —49-76244
9 17 690 69448 51452
10 89 18 0608
R 6-39043 —2-780156 —10-55621 —17-56717 —26-016 —36-694 —49-5
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Table 7.9
Fourier cosine functions Matrix 5.20
Bi=6
n ,u,(o) ,u.(') M(Z) ,u,(3) “(4) #(5) I"(G)
5 4-332990 —1-721606 —5-75158 —9-65789 —17-20191
6 3016 19707 4317 58112 —16-33280 —25-95622
7 7 684 03 7928 29027 20801 —36-79274
8 6 8964 18297 14212
9 72 2628
10 1 16
R 4-333017 —1-719684 —5-74303 —9:57926 —16-28964 —25-1827 —36-126
Table 7.10
Bl = 14
n p© u® e u® ) e u®
5 11-41641 1-533415 —7-56130 —13-95481 —21-43372
6 828 640672 —6-90054 —13-12422 —18-52045 —29-51375
7 34 6841 82441 —12-95067 —17-88346 —26-53708 —39-86957
8 7013 090 3790 1929 —26-05245 —37-05435
9 6 83 53 681 2103 —36-71021
10 2 77 023 69449
R 11-41834 1-647016 —6-82083 —12-9375 —17-816 —26-02 —36
Table 7.11
Eigenvectors of the eigenvalue @ of Table 7.4
n=24 n=35 n==6 n=17 n=28§ n=29
1-000000 O | 1-000000 O | 1-000000 O | 1-000000 O | 1-000000 O | 1-000000 0
9-348611 —1 | 9-353370 —1 | 9-353447 —1 | 9-353448 —1 | 9-353448 —1 | 9-353448 —1
3-763321 —1 | 3-775903 —1 | 3-776108 —1 | 3-776109 —1 | 3-776109 —1 | 3776109 —1
8-466407 —2 | 8-758015 —2 | 8-790189 —2 | 8-790231 —2 | 8-790231 —2 | 8-790231 —2
1-303215 —2 | 1-324382 —2 | 1-324555 —2 | 1-324555 —2 | 1-324555 —2
1-379120 —3 | 1-390391 —3 | 1-390442 —3 | 1-390442 —3
1-066697 —4 | 1-071557 —4 | 1-071570 —4
6-289803 —6 | 6307003 —6
2-918673 —7
Table 7.12
Comparison of theoretical and actual rates of convergence for 1@ of Table 7.4
© n i ¢ ©  _ 0
n " o a = . — L
n € l\/(4n2 — 1) o, a(l — €2/a2) [LEST Hn
4 3-778196 8-4664 —2 ~6 2-9866 —1 1-4903 —2 0-001923
5 3-780119 1-3032 -2 ~6 4-5842 -2 3-5025 —4 0-000030
6 3-780151 1-3791 -3 ~6 4-8438 -3 3:9104 —6 0-000000
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