
Series solution of certain Sturm-Liouville eigenvalue problems

By D. J. Green* and S. Michaelsonf

The solutions of certain Sturm-Liouville eigenvalue problems are known in the form of orthogonal
functions <f>r(x), r = 0, 1, 2, . . ., arranged so that the moduli of the corresponding eigenvalues
Xr increase monotonically with r, i.e.

with the <f>r(x) satisfying appropriate boundary conditions.
The investigations described in this paper are an attempt to examine the conditions that must

be satisfied in order that the extended eigenvalue problem

q(x)U =
(again with U satisfying appropriate boundary conditions) may be solved by expansion of U in
a series of the orthogonal functions <f>r(x).

Practically all orthogonal systems satisfy a 3-term recurrence relation. If the <f>r(x) satisfy
such a relation, this, together with the differential equations satisfied by the <f>r(x), may be used
to transform the extended differential eigenvalue problem to that of finding the eigenvalues of an
infinite symmetric tri-diagonal matrix. An examination is made of the recurrence relations
satisfied by the ortho-normal polynomials, and the conditions that must be satisfied by the coefficients
of the basic recursion in order that certain polynomial operators may give such matrices are
obtained. The results are applied to the Jacobi polynomials and Fourier functions.

A discussion of the convergence of the eigenvalues obtained by repeatedly bordering finite
principal submatrices of the infinite matrices follows. Several numerical examples are given, the
calculations being made on the University of London Ferranti Mercury computer.

1. Introduction
The general Sturm-Liouville problem is that of finding
non-trivial functions Ufa), and corresponding para-
meters A,-, which satisfy the differential equation

Seu = JLJ p(x£Z- (1.1)

in the range (a, b), and boundary conditions which
result in

in the form of orthogonal functions <j>£x), r = 0,1, 2 , . . . ,
arranged so that the moduli of the corresponding eigen-
values Ar increase monotonically with r, i.e.

<?U*) = KpWtAx). (1.4)
The purpose of this investigation is to examine the
conditions that must be satisfied so that the extended
eigenvalue problem

= 0 for (1.2)
q2(x)P(x)U = (1.5)

where the dash indicates differentiation with respect to x.
The boundary conditions can take a variety of forms.

For example, if p(a) ^ 0 and p(b) ^ 0, homogeneous
boundary conditions

oc'U,(a) + <xU'i(a) = 0
p + pUXb) = 0 (1.3)

where neither both the constants a and a' nor both the
constants j8 and fl' are zero, may be required. Alter-
natively, if p{a) = p{b) = 0, U, and U', must remain
bounded at both x = a and x = b.

Lanczos (1950) has suggested a method by which the
analytical solution of the general problem may be
obtained. His technique, however, involves finding the
Green's function K{x, t) of the operator £?. This is
available in closed form in comparatively few cases.
Further, the iteration process requires repeated integra-
tions which may go beyond our analytical facilities.

The solution of certain problems has been obtained
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(with the same boundary conditions as those associated
with the operator JS?) may be solved by expansion of U
in a series of the orthogonal functions (f>r(x).

It will be shown that for certain operators the problem
(1.5) can be reduced to finding the eigenvalues of an
infinite symmetrical tri-diagonal matrix. For some of
these matrices the sequences formed of corresponding
eigenvalues of finite leading principal sub-matrices are
very convergent.

2. Reduction to tri-diagonal form
Suppose the <f>r(x) are ortho-normal functions, being

solutions of the eigenvalue problem

£?U=\P(x)U (2.1)

in (a, b) with appropriate boundary conditions.
For such functions

J P{x)<t>p(x)Ux)dx = 8, (2.2)
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Eigenvalue problems

where Spq is "Kronecker's symbol";

8 , , = 1 (P = 1)
= 0 (p¥=q).

Assume a solution of (1.5) of the form

U= S *r<f>kr+n(x)
r=0

where & is a positive and « a non-negative integer.
If

r = 0
(2.4)

r = 0

Dk + n •Ak+n

are two solutions corresponding to the distinct eigen-
values A = /u.l and A = fx2 respectively, then

r=0 r=0

= 0
r=0

(2.6)

i.e. the aj0 are orthogonal vectors.

For orthogonal functions (and especially orthogonal
polynomials) recurrence relations of the form

1i{x)^kr+n = Akr+n<f>kir+i)+n

+ Bkr+n<l>kr+n + Qr+n^«r

r = 1, 2, 3, . . . (2.7)

where the Ap, Bp, and Cp are independent of x, exist for
certain q2(x).

In fact if the orthogonal functions are normalized,
the recurrence relations (2.7) are symmetric and take the
form

?2(x)<£n = An<j>k+n + Bn<j>n

+ Bkr+n<f>kr-i-tt + -^A(r-1)+n^A(r-1)+n

r = l , 2 , 3 , . . . (2.8)

The substitution of (2.3) into (1.5) and the application
of relations (2.1) and (2.8) gives

)
r=0 r = 0

1)+ „

Bkr+n<t>kr+n + ^ * ( r - 1)+ n<t>k(.r- 1)+ n)

£ <*r<t>kr+n-
0r = 0

Equating the coefficients of <f>kr+ „ leads to the infinite
(2-3) tri-diagonal matrix eigenvalue problem

(An + Bn)<x0 +
Ak(r- 1)+ nar- 1 tr+ «)ar

r = I, 2 , 3 , . . .

,~ « i.e. the problem of finding the eigenvalues of the infinite
" symmetric tri-diagonal matrix

kr+n + Bkr+n

(2.9)

If series (2.3) is truncated at r = m, and substituted
in (1.5), a finite square segment of the infinite matrix
(2.9) is obtained. It will be shown in Section 6 that if
the eigenvalues of this finite segment are calculated, and
the process repeated with r — m + I, m + 2, . . . , then
the sequence of values obtained for corresponding
eigenvalues converges very rapidly for certain operators.

3. Orthogonal polynomials
The first class of orthogonal functions considered

is the orthogonal polynomials. [See, for example,
Jackson (1941) and Szego (1939).] These satisfy, when
normalized, recurrence relations of the form

+ bo<f>o
x<f>p = ap<f>p+i + bp<f>p + ap_ ,<£ ,_ i

/ > = 1 , 2 , 3 , . . . (3.1)

where <j>p is a polynomial of precise degree p.
The problem of what operators q2{x) will give [using

(3.1)] recurrence relations of the form (2.8) and hence a
symmetric tri-diagonal matrix eigenvalue problem is
now considered. In this connection it should be noted
that the addition of a constant to q2{x) merely changes
the eigenvalue \i by that constant, and so is omitted in
the discussion.

(a) q2(x) = ft*

q2(x)<t>P = Pi(.ap<l>p+1 + bP<i>p + °P- I<I>P- 0

7 7 = 1 , 2 , 3 , . . . (3.2)

This is of the form (2.8) with k = 1, n = 0.
323

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/7/4/322/354260 by guest on 13 M
arch 2024



Eigenvalue problems

Thus the substitution

r = 0

will transform

&U + Pixp(x) U = fjip{x) U

to an eigenvalue problem of type (2.9).

(b) q2(x) = p2x* + jB,x

ap{(bp+, + bp)p2

(3.3)

(3.4)

+ P2^p- \dp- 2<t>p- 2
p = 0 , 1 , 2 , . . . (3.5)

where as = (f>s = 0 when 5 is a negative integer.
There are two ways in which (3.5) can reduce to (2.8).

Clearly k — 2, but n can be zero or unity.

For n = 0 the following set of equations has to be
satisfied

bp + bp + l = -pjp2 /> = 0, 1, 2, . . . (3.6)

Thus if condition (3.6) is satisfied the substitution

r=0

will transform

ZU + (P2x
2 + plX)P(x) U = ppix) U (3.7)

into a matrix eigenvalue problem of type (2.9).
For n = 1 the conditions to be satisfied are identical

with those for n = 0, and the substitution

r = 0
(3.8)

will also convert (3.7) to an eigenvalue problem of type
(2.9).

(c) q2(x) = P3x> + p2x
2 + p l X

apap+x

bp+1+ bp) + p2}<f>p+2

ap{p3(a
2
p

2
p+, + bp+ x(bp+, + bp)
+ a\_ 0 + p2(bp+ 1+bp)

P+ !+bp)+ bp{a\ + b\ +
«p- i(bp + bp_ b2

p

ap_

bp_2)

p = 0, 1, 2, . . . (3.9)
where as = <f>s = 0 when s fa a negative integer.

Clearly if (3.9) is to reduce to a recurrence relation
similar to (2.8) then k = 3, and possible values of n are
0,1, and 2.

For the appropriate terms of (3.9) to vanish

(3.10)

p = « + 3, B + 6, n+9, ... (3.11)

and, in addition to (3.10) and (3.11)

For n = 0

183(62 + bx + b0) + p2 =G\

p3{a\ + a

For n = 1

bl(bl + b0)} \ (3-12)

+ P2Q1 + bo) + Pi =

=01

+ b2{b2 + b{) + a] + b\ + ag]
+ P2(b2 + bl) + pl = O

Forn = 2

b3+ b2)
p3[a\ +a\ + a\ + b3{b

+
p3[aj + a\ + a% + bx{b2

b0)

3 + b2) + b*\
3 + b2) +

(3.13)

= 0 ,

= 0

= 0

(3.14)

bx+ bQ) + p2

These conditions simplify in special cases.

For n = 0

Taking all the bp to be equal, and the ap to be equal
forp = 1, 2, 3, . . . reduces the equations to be satisfied
to

bp = -
ap=al\2

Forn = 2

p = 0,1,2,.. A (3.15)

Again taking all the bp to be equal, the ap to be equal
for p = 3, 4, 5, . . ., and ax = a2 reduces the equations
to be satisfied to

bp = -

a\ = - pjp3)/3 p = 0 , 1 , 2 , . . . . } ^16)
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For n = 1

Eigenvalue problems

where

Taking the bp to be equal for/> = 1, 2, 3, . . ., and the
ap to be equal for/> = 2, 3, 4, . . . reduces the equations
to be satisfied to

bp = -jS2/3j33 p = 1, 2, 3, . . .

l - /3,/j8,]/3 /> = 2, 3, 4, . . .

- j3,/j33]/3

(3.17)

(3.18)

(3.19)

a\ + a\ = 2PI/9PI -b%- 2p2b0/3p3 - j3,/jS3. (3.20)

Equations (3.19) and (3.20) require

b0 = -jS2/3j33 ± [PI/9PI - j3,/3j33]
1/2. (3.21)

Thus if appropriate conditions are satisfied for
n = 0, 1, 2, the substitution

U= £ «r<l>3r+n(x) (3.22)

will transform the differential eigenvalue problem

plX)P(x)U = w(x)U (3.23)

into an infinite matrix eigenvalue problem of type (2.9).
The results of this Section will be applied to specific

orthogonal polynomials, viz. the Jacobi, in Section 4,
followed by a discussion of the Fourier functions.

a0 =
1)(J8

X
+ p + 2p + 2

(a + j3+jp + l)O +

P+2

(« +/> + D(/3 +/> + 1)"]J(a + j8 + 2p j8 + 2p + 3)

°" (a + 0 + 2p)(a + P + 2p + 2)
p= 1,2,7, . . . (4.3)

The extended eigenvalue problem is

&U + q2(x) p(x) U = y,p{x)U (4.4)

with the same boundary conditions as those of the
operator £C. Operators q2(x) are considered as in
Section 3.

(a) q2(x) = P&

Clearly the substitution

r=0
(4.5)

will convert the differential eigenvalue problem (4.4) to
the problem of finding the eigenvalues of the infinite
tri-diagonal matrix

p x 0
- ( a + p + 2) + J8,6, pxax

4. The Jacobi polynomials
The Jacobi polynomials Pp'

&(x) are solutions of the
eigenvalue problem

}
= A(l - x)°(l + xfU a, p > - 1 (4.1)

dU
in the range (—1, 1) U and -j- remaining finite at the

end points of the range.
The eigenvalues are

K = -P(P + <*• + P + 1).

The recurrence relations satisfied by the normalized
polynomials are

/> = 1 , 2 , 3 . . . (4 .2 )

-- I -r(r + a + p + 1) + Pxbr

(4.6)

where the ar and br are given by (4.3).
The off-diagonal elements of (4.6) are bounded while

the diagonal elements increase in modulus approxi-
mately as r2. The convergence of the eigenvalues
obtained from the principal sub-matrices is discussed in
Section 6. Inequalities (6.18) and (6.19) give very good
indications of the rate of convergence to be expected.
The eigenvalues obtained from the principal sub-
matrices for certain values of /3,, a. and p are given in
Tables 7.1 to 7.4.

(b) q2{x) = p2x* -

Condition (3.6)

is satisfied only if

i.e.

P = 0,l,2

P = 0, 1, 2

a = j8

Pi = 0 .

(4.7)

(4.8)
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Eigenvalue problems

Provided (4.7) and (4.8) are satisfied, the substitution

U =
r = 0

(4.9)

will convert the differential problem (4.4) into the
infinite matrix eigenvalue problem shown in (4.10) below

where a, —
' + !)(/• + 2a + 1)
2a + l)(2r + 2a + 3).] •

The off-diagonal elements are again bounded while
the diagonal elements increase in modulus approxi-
mately as 4r2. The convergence of the eigenvalues of
this type of matrix is discussed in Section 6(b). In-
equalities (6.20) and (6.21) indicate the rate of con-
vergence to be expected. Numerical examples are given
in Tables 7.5 and 7.6.

(c) q2(x) = fax3 + fax2 + fax
Initially expansions involving n — 0 and n = 2 are

considered. To satisfy the bp conditions of (3.10),
(3.12) and (3.14)

bp = constant = 0 p = 0, 1, 2, 3, . . .

so that
a = £ (4.11)

fa = 0. (4.12)

With n = 0 conditions (3.11) and the second of (3.12)
can be satisfied only if

a = - 1 / 2 (4.13)

i.e. for the Chebyshev polynomials of the first kind.

In addition and /?3 must be chosen so that

j8, = -3 j8 j /4 . (4.14)

Thus if (4.11), (4.12), (4.13) and (4.14) hold, the sub-
stitution

U = (4.15)

reduces (4.4) to the problem of finding the eigenvalues
of the infinite tri-diagonal matrix (4.16) below.

The off-diagonal elements are constant while the
diagonal elements increase in modulus as 9r2. The
matrix is similar to that discussed in Section 6(a). The
eigenvalues converge very rapidly.

With n = 2 the situation is identical with that dis-
cussed above except that conditions (3.14) are satisfied by

< x = 1/2 (4.17)

i.e. the Chebyshev polynomials of the second kind.
Thus, subject to conditions (4.11), (4.12), (4.14) and

(4.17), the substitution

U =
r=0

(4.18)

reduces (4.4) to the problem of finding the eigenvalues
of the infinite tri-diagonal matrix (4.19) below.

(4.19) is of similar type to (4.16) and the remarks
made about the convergence of the eigenvalues of matrix
(4.16) apply equally well to those of (4.19).

Returning to the expansion involving n = 1, to satisfy
the bp conditions of (3.10) and the first of (3.13)

bp = constant = 0 P=l,2, 3, (4.20)

(4.10)

- 9

-9r2
(4.16)

8 /33/8
- 3 5

-(3r + 2)(3r + 4) /?3/8
(4.19)
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Eigenvalue problems

so that
« = +J8

jS2 = 0.

(4.21)

(4.22)

If (4.21) and (4.22) are satisfied, conditions (3.11) and
the second of (3.13) can be satified only if either

a = - 1 / 2

P = 1/2
(4.23)

or

(4.24)
U = 1/2

= - 1 / 2 .

In addition ySj and /33 must be chosen so that

0, = — 3£3/4. (4.25)

The third of conditions (3.13) is also satisfied.
Thus subject to conditions (4.22), (4.25), and either

(4.23) or (4.24) the substitution

r=0
(4.26)

reduces (4.4) to the problem of finding the eigenvalues
of the infinite tri-diagonal matrix

The third of (4.29) can be written

xTp = l)Tp/2

where E is the displacement operator.
Suppose q2{x) is a polynomial of degree m, i.e.

q2{x) = ), (4.30)

then

For (4.31) to reduce to a 3-term recursion

j 8 m _ , = / 3 M _ 3 = . . . = O

, . (4.31)

(4.32)

and the non-zero /},- must be the coefficients of powers
of cos 0 in the expansion of 2~m + 1 cos m6 viz.

eve/i

Pi =
- 22){m1 - 42) . . . [m2 - {i - 2)2)

(4.33)

-2 +
j33/8

&/
- 2 0 03/8

(4.23) and (4.24) requiring the positive and negative
signs respectively.

This matrix is of similar type to (4.16) and the com-
ments made about the convergence of the eigenvalues of
(4.16) apply equally well to those of (4.27).

Thus the only Jacobi polynomials which give infinite
symmetrical tri-diagonal matrices when used with a
cubic operator q2{x) are those for which either
a = p = ± 1/2 or a = -p = ± 1/2. The effect of a
polynomial operator q2(x) on these Jacobi polynomials
is discussed in the following sub-sections.

(d) Chebyshev polynomials of the first kind Tp{x)

It has been shown that the Chebyshev polynomials of
the first kind Tp{x), i.e. the Jacobi polynomials for which

a = £=-1/2, (4.28)

lead to symmetric tri-diagonal matrix eigenvalue prob-
lems for certain polynomial operators q2{x). The effect
of a general polynomial operator is now discussed.

The basic recursion of the normalized polynomials is

xT0 = TJV2
xTt = T2/2 + To/V2 (4.29)

J83/8 - ( 3 r + l)(3r + 2) £3/8

(4.27)

m odd

n
Pi

With;

where

(4.34)

yjn + i—2 . 2
1) 2 >H(IH

these ph (4.31)

q2{x)Tp = fc

= p2{2-«Tf

b = constant.

requires

I2)(m2 3 2 ) . .

2m-'O'!)
becomes

,{2~m(Em + E~m)

,+ m +bTp + 2~m

k = m

+ b}Tp

Tp-m)

•a-- 2 ) 2 )

(4.34)

(4.35)

and n must be chosen so that the initial 2-term recursion
takes the correct form.

The choice of the /?, in (4.32) and (4.33) means that
q2ipc) is a multiple of the normalized mth Chebyshev
polynomial or differs from one by a constant, i.e.

q2(x) = $22->»V(2TT)Tm(x) + jff,. (4.36)

With n = 0 the recursions take the required form, viz.

(4.37)
rm ( ,_

r = 2 , 3 , 4 , . . .
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Eigenvalue problems

Thus, provided q2(x) is of form (4.36), the substitution

S «r

will reduce

x ) dx)

(4.38)

(4 39)

to the problem of finding the eigenvalues of the infinite
tri-diagonal matrix shown in (4.40) below.

Again (4.40) is of similar type to (4.16) and the remarks
made about the convergence of the eigenvalues again
apply.

(e) Chebyshev polynomials of the second kind T*(x)
These are the Jacobi polynomials for which

a = p = 1/2 (4.41)

and the basic recurrence relations satisfied by the
normalized polynomials are

xT$ = 7?/2
xT* = (Tp*+, + 7-0/2 / ,= 1,2,3,... (4.42)

The situation is identical to that described in the
previous Section, and for a general polynomial operator
q2(x) of degree m to give the 3-term recursion, conditions
(4.32), (4.33) and (4.35) must be satisfied. The desired
initial 2-term recursion is obtained if

n = m — 1.

Recursions (4.37) become

+ m-

i -* ( ' •—

cT*_,

+ m~ 1
/ /2m + CJrm+ m

r = 1, 2, 3,

(4.43)

(4.44)

where c is a constant, equal to zero if m is odd. Thus
provided q2(x) satisfies the above conditions the sub-
stitution

U=
r = 0

(4.45)

will reduce

(4.46)

to the problem of finding the eigenvalues of the infinite
tri-diagonal matrix shown in (4.47) below.

Remarks made about the convergence of the eigen-
values of (4.16) also apply to those of the above matrix.

(/) The Jacobi polynomials a. = -1/2, j8 = 1/2

The basic recurrence relations satisfied by the
normalized polynomials are

xP0 = (P, + P0)/2
P= 1 ,2 ,3 , . . .

(4.48)

The situation is again similar to that described in
Section 4(d). For a general polynomial operator q2(x)
to give the required 3-term recursion, conditions (4.32),
(4.33) and (4.35) must be satisfied. The required initial
2-term recursion is then obtained if m is odd and

n = (m- l)/2. (4.49)

The recursions for q2(x)Pp{x) then take the form

qi{x)P(m- mi = HpOm- o/2 + P(m- i)/2)/2
m

r+ 3)m- l)/2

r = 1, 2, 3, . . .

(4.50)

Thus provided q2{x) satisfies the above conditions the
substitution

CO

U = X a P fjĉ  (4 51)

02/2
2
— "2

02/2"

- ( w 2 - 1) + c j 2

- ( 4 m 2 - 1) + c

(4.40)

022-" - { ( r + l)2w2 - 1} + c p22~"<

(4.47)
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will reduce

Eigenvalue problems

are an orthonormal set in the range (0, TT) being solutions
of the eigenvalue problem

f>TT

-- XU (5.2)

to the problem of finding the eigenvalues of the infinite
tri-diagonal matrix

- (m2 -
-(9m2 -(9m

Comments made about the convergence of the eigen-
values of (4.16) also apply to those of the above matrix.

(g) Jacobi polynomials a. = 1/2, j3 = —1/2
The analysis follows an identical pattern to that

described in the previous sub-section, but the first of
recursions (4.48) and (4.50) are replaced, respectively, by

xP0 = (P, - Po)/2 (4.54)

qi(x)Pim- 1)/2 = $2(P(3m- ,)/2 - Am- O/2)/2"" (4.55)

and equation (4.52) by

U. (4.56)

U« +*>'"<• -#*%

The resulting infinite tri-diagonal matrix has the same
elements as (4.53) except that the first becomes
-$22~m - (m2 - l)/4.

5. Fourier functions

The next orthogonal functions discussed are the
Fourier Sine and Cosine functions which are very closely
related to the Chebyshev polynomials, and the con-

- I 2 /S./2
jB,/2 -22 j8,/2

elusions are equivalent.

(a) Sine functions

The Fourier Sine functions

/> = 1, 2, 3, (5.1)

with the boundary conditions which may take the form

j (53)

-((2r + \)2m
2m2 -

(4.53)

and with eigenvalues

K =-p2 P = 1, 2, 3, . . . (5.4)

The recurrence relations satisfied by the <f>p(x) are

(cos xtft = $2\2 \

( c o s x ) < ^ = ( ^ , + , + < £ , _ , ) / 2 /> = 2 , 3 , 4 , . . . / K'J

T h e e x t e n d e d e i g e n v a l u e p r o b l e m i s

• + q2(x)U=fiU (5.6)
with any boundary conditions for which the <f>p(x)
satisfy (1.2).

(0 9i(x) = Picosx

This is the Mathieu problem discussed in this con-
nection by Mayers (Fox, 1961).

Clearly the recursions are of the form (2.8) with k = 1,
n = 1, and the substitution

U= (5.7)

will reduce (5.6) to the problem of finding the eigenvalues
of the infinite tri-diagonal matrix

J8./2 -r2 PJ2

(5.8)

The convergence of the eigenvalues obtained from the
principal sub-matrices of (5.8) is discussed in Section
6(a) where expressions (6.13) and (6.14) give very good
estimates of the rate of convergence to be expected.
Numerical examples are given in Tables 7.7. and 7.8.
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Eigenvalue problems

(ii) q2(x) = polynomial of degree m in cos x
The situation is identical to that discussed in Section

4(e), i.e. the Chebyshev polynomials of the second kind.
In order that q2(x)(f>p(x) should give the required
recursion, the operator q2(x) rnust either be a multiple
cos mx or differ from one by a constant, i.e.

= P2 cos mx +

so that

q2(x)j>m =

The substitution

(5.9)

(5.10)
r = 2, 3, 4

r = 0

will then reduce (5.6) to the problem of finding the
eigenvalues of the infinite tri-diagonal matrix (5.12)
below.

The eigenvalues obtained from the principal sub-
matrices of (5.12) will converge in an identical manner
to those of (5.8).

(b) Cosine functions
The Fourier Cosine functions

(5.13)
= V(2/w) cospx p = 1, 2, 3, . . .

are an orthonormal set in the range (0, TT) being solutions
of the eigenvalue problem

(5.14)
ax2

with boundary conditions which may take the form

U'(0) = 0
U'(ir) = 0

(5.15)

and with eigenvalues

K= -P2 ^ = 0, 1,2, . . . .

The recurrence relations satisfied by the <f>p(x)

(cos x)<f>0 =

(5.16)

are

(cos x)4>i = <f>2/2 + <j>JV2

(cos x)<j>p = (<f,p+, + <f>p_ , ) /2 p = 2, 3 , 4

The extended eigenvalue problem is

5.17)

(5.18)

with appropriate boundary conditions.

(i) q2(x) = j8, cos x
Clearly the recursion obtained by operating q2(x) on

(f>p(x) is of the form (2.8) with k = 1, n = 0, and the
substitution

£ / = (5.19)

will reduce (5.18) to the problem of finding the eigen-
values of the infinite tri-diagonal matrix (5.20) below.

The comments made about the convergence of the
eigenvalues of (5.8) apply equally well to those of (5.20).
Numerical examples are given in Tables 7.9 and 7.10.

(ii) q2(x) = polynomial of degree m in cos x

As in Section 5(a) (ii), in order to obtain the appro-
priate recurrence relations when q2(x) operates on <j>p(x),
q2(x) must reduce to form (5.9). The recursions then
take the form

r = 2, 3, . . .

r (5-21)

)32/2 - 4m2 ]82/2

j82/2
(5.12)

- I 2 j8,/2
j8,/2 - 2 2

j8,/2 - r j3,/2

(5.20)
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and the substitution

Eigenvalue problems

Then

(5.22) 5

will reduce (5.18) to the problem of finding the eigen-
values of the infinite tri-diagonal matrix (5.23) below.

Again the comments made about the convergence of
the eigenvalues of (5.8) apply to (5.23).

6. Convergence of the eigenvalues

(a) First consider the infinite symmetric tri-diagonal
matrix (6.1) below, where q is a constant.

Bounds are now obtained for the difference between
the eigenvalues of the matrix of the first n rows and
columns of (6.1), and those of the matrix of the first
(n + 1) rows and columns.

Consider the matrix Sn (see (6.2) below).
Let nn be an eigenvalue of Sn and x the corresponding

eigenvector normalized to have Euclidean length unity,
i.e.

(6.3)

(6.4)

- (» + I)2

(6.5)

where en is the last column of the unit matrix of order
n and an is the last element of x.

Wilkinson's application of Rayleigh's Theorem
(Wilkinson, 1961) shows that at least one eigenvalue
fj.n+1 lies in the interval

\fxn — / x n + 1 | < \q<xn\. (6.6)

If the Gershgorin circles of Sn (Gershgorin, 1937) are
examined, it is clear that they are centred at — 1 ,
—4, . . ., — s2, . . ., —n2, and have the same radius 2\q\
except the first and the last which both have radius \q\.
Clearly if n is large enough, a positive integer r can be
found such that all circles centred to the right of — r2

overlap, while the one centred at — r2 and those to the
left are disjoint. In fact r is the least integer such that

2r— (6.7)

-m2

-m2!2 |82/2

Pi/2 -m2r2 + ft j82/2

(5.23)

-1
q

q
- 4 q

-s2
(6.1)

£„ = - 1 q
q —4 q

q - i

q -t

(6.2)
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If /4P is the ith eigenvalue of Sn arranged in order of
descending algebraic value,

Atg> > -(r - I)2 - 2\q\ > -r2 + 2\q\ (6.8)

i = r — 1, r — 2, . . ., 1

/*« > -«'2 - 2|9| > - ( / + I)2 + 2\q\ (6.9)

i = r, r + 1, ...,«.

Now consider the equations satisfied by certain of the
elements of x

Eigenvalue problems

It should be noted that inequalities (6.13) and (6.14)
hold for the eigenvalues /xn+ m of matrix Sn+ m since

-1 - 0*?
(6.10)

= 0

First assume g > 0 and i < r, and choose <xn > 0,
then using (6.8)

an<an_1 < an_2. . . < ar_ (6.11)

and

(» - I)2 - q • • > «

n2 — r2 ' (n - I)2 - r2 " ' ' (r + I)2 - r2 '
(6.12)

«n <
q"-r(2r)\

• ( « + r ) ! ( n - r ) r

Substituting in (6.6) gives

/ = r — 1, r — 2, . . ., 1.

Similarly

( 6 1 4 )
! ( B - i - 1)! (-()-14')

i = r, r + 1, . . ., n — 1.

For q < 0 the same argument gives identical expres-
sions except that q is replaced by \q\.

The sequences of corresponding eigenvalues obtained
from the matrices Sn, Sn+,,.. . satisfy Cauchy's principle
of convergence, i.e. corresponding to any given positive
number e there exists an n such that

< €

for all positive integral m. Thus the eigenvalues con-
verge and the limit lies in the range

/*? ± l*«»|.
Inequalities (6.13) and (6.14) give very good guides to
the order of matrix to be used to obtain a specified
accuracy.

However, when the eigenvalues and eigenvectors of Sn

have been calculated, better bounds than those given by
(6.13) and (6.14) can be obtained. Now \J$ is the

Rayleigh quotient for vector _ and matrix Sn+1.

Assuming that there is only one eigenvalue ^4°+i of
-Sn+! which satisfies (6.6) while all others satisfy •

\H£- f4P+i\> a J^i* (6-15)

then the application of Wilkinson's "improved" bound
(Wilkinson, 1961) gives the inequality

u(0 _ u(0 (6.16)

Numerical examples of the eigenvalues of matrix (6.2)
are given in Tables 7.7. and 7.8 with q = Z /̂2.

(b) Jacobi polynomials

If the above technique is applied to matrix (4.6), the
following inequalities are obtained.

1 ) 8 , 1 - . a .
{n(n + a

{(r + l)(r + a + p + 2) - /•(/• + « + |8 + 1)}

. . . , 0 , (6.18)

2 + a + j8)} . . . {(i + 2)(i + 3 +

i = r, r + 1, r + 2, . . . , « - 1,
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Eigenvalue problems

where r is the smallest positive integer such that

2r + a + p-pt(br - *>,_,) > 1/5,1(0, + 2ar_, + ar_2).
Clearly the eigenvalues obtained by repeated bordering
of the principal sub-matrix of (4.6) will converge very
rapidly, and (6.18) and (6.19) give good estimates of the
order of matrix required to give a specified accuracy.
Numerical examples are given in Tables 7.1 to 7.4. A
numerical comparison of inequality (6.18) and the
equivalent of (6.16) for one of the eigenvalues of
Table 7.4 is given in Table 7.12.

The corresponding inequalities for matrix (4.10) are

significant digits that have changed are given sub-
sequently. The row marked "R" contains the most
significant digits that have been repeated.

It should be noted that when constants j3, appear
only in the off-diagonal elements, the eigenvalues are
unaltered if jS( is replaced by — /?,, so that negative
values of j8, were not considered in these cases.

The eigenvalues were obtained by the method of
bisections described, for example, in Modern Computing
Methods and are given to an accuracy

{2n(2n + 2a + 1) - 2(/ + l)(2i + 2a + 3)} . . . {2(r + l)(2r + 2a + 3) - 2r(2r + 2a + 1)}

/ = r - 1, r - 2, . . ., 0.

I & I" "'02/^2;,+1 • • • ^21 + 2^21+3
{2«(2n + 2a + 1) - 2{i + l)(2i + 2a + 3)} . . . {2(i + 2)(2i + 2a + 5) - 2(i + l)(2i + 2a + 3)}

i = r, r + 1, . . ., n - 1.

where r is the least positive integer such that

2(4r + 2a - 1) + p2(a\r_2 + a\r_ 3 - a\r - a\T_,) > \p2\(.a2/,2r+, + 2a2r_2a2r_ , + a2r_Aa2r_3).

(6.20)

(6.21)

(6.22)

Again the eigenvalues obtained by repeated bordering
of the principal sub-matrix will converge very rapidly.
Numerical examples are given in Tables 7.5 and 7.6.

7. Numerical examples
The following tables give the eigenvalues of some of

the matrices discussed in the previous Sections, n being
the order of the matrix. The eigenvalues of the lowest
order matrix, and the additional eigenvalues obtained
after each bordering are given in full, but only the

where
| x , - x o | < 10-7|H +10-17.

The eigenvectors were also calculated, normalized so
that the largest element is unity, but space prevents their
inclusion in full in the paper. However, Table 7.11 gives
a typical example, the elements being given in floating-
point form.

The calculations were made using the University of
London's Mercury computer.

A comparison of the theoretical rate of convergence
and the actual rate for one of the eigenvalues of Table 7.4
is given in Table 7.12.
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Eigenvalue problems

Table 7.1

Jacobi polynomials (1/2, —1/2) Matrix (4.6) <x= 1/2 = -1/2

3

n

4
5
6
7
8
9

n

4
5
6
7
8
9

2

2

-0

-0

•090978

•090978

•053627
570

053570

—2-034822
478

7

—2-034477

M<»

-2-866793
402
0

-2-866400

-6-19004
8092
85

-6-18085

-6-21341
0438

2

-6-20432

-12-36612
09843
426
4

-12 09424

Table 7.2

-12-36617
09849

432
0

-12-09430

-20

-20

-20

-20

/x<4>

•27716
05859

636

•05636

•27716
05859

636

05636

-30

-30

-30

-30

•22280
03886
753

03753

•22280
03886
753

•03753

-42

-42

-42

-42

18619
02765
680

•02

•18619
02765
680

02

Table 7.3

Legendre polynomials (a) Matrix (4.6) a = (3 = 0

,(0) /(3)

4
5
6
7
8
9

1 092649
70

-2-478415
7976

4

-6-23732
2785
78

-12-37691
10528
101
099

-20-28156
06086
5860
59

-30-22505
03984
850

-42-18749
02814
729

R 1 092670 -2-477974 -6-22778 -12-10099 - 2 0 05859 -30 03850 -42-02

Table 7.4

,(0) ,(D ,(2) ,(3) ,(4) ,(6)

4
5
6
7

3-778196
80119

51

-2-503256
459438

8198
83

7

7

•38575
19126
8190
74

•18174

-13
-12

-12

•88919
•68135
58076
7812
10

•57810

-21
-20

-20

•44808
•38204
2390
292

•32292

-31
-30

-30

•17726
•24687
1099
56

•210

-42

-42

•99134
17263
4908

•1Jt 3-780151 -2-458183
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Eigenvalue problems

Table 7.5

Legendre polynomials (b) Matrix (4.10) a = p = 0

= - 3

n

4
5
6
7
8

R

Pi = 3

/ i

4
5
6
7
8

-0-879934

-0-879934

/n(0)

1-144328

1-144328

/*<')

-7-64932

-7-64932

/i(O

-4-531027

-4-531027

/x(2)

- 2 1 - 5 3 5 6 5
4

- 2 1 - 5 3 5 6 4

/*(2>

- 1 8 - 4 9 6 4 1
40

- 1 8 - 4 9 6 4 0

LL

- 4 3 - 5 3 5 1 0
1619

9

- 4 3 - 5 1 6 1 9

Table 7.6

-40-51689
49799

-40-49799

u(4)

-73-5242
093

-73-5093

JU.(4>

-70-5136
4988

-70-4988

/Lt<5)

-111-5183
060

-111-5060

/x(5)

-108-5115
4992

-108-4992

M(6)

-157-5147
042

- 1 5 7 - 5

/j,(6>

-154-5099
4994

- 1 5 4

Table 7.7

Fourier sine functions Matrices (5.8) and (6.2)

Pi = 6 fa =
n

5
6
7
8
9

10

ft = 14 fa =
//
5
6
7
8
9

10

y?

= 3)

1-140882
5

1-140885

= 7)

/*«»

6-38954
9041

3

6-39043

JLl(O

-4-348921
813

2

-4-348812

-2-807643
781119

0173
56

-2-780156

g

9

- 1 0

- 1 0

M < 2 >

•50340
152

0

•50150

•74138
56691

5648
21

•55621

-16-33234
28980

17

-16-28917

Table 7.8

^(3)

-18-32756
-17-63852

56983
721

17

-17-56717

^4>

-25-95622
20801
18297

71

-25-18271

^4>

-29-51295
-26-53430

04915
1770
690

89

- 2 6 0 1 6

-36-77928
14213
2628

16

-36-12616

-39-86956
-37-05434
-36-71019

69448
18

-36-694

- 4 9 -

- 4 9 -

- 5 2 -
- 4 9 -

- 4 9 -

67631
10309
09248

2

0924

3805
76244
51452
0608

5
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Eigenvalue problems

Table 7.9

Fourier cosine functions Matrix 5.20

,(0) ,.(3) ,(4)
^

1.(6)

5
6
7
8
9

10

4-332990
3016

7

-1-721606
19707

684

-5-75158
4317

03

-9-65789
58112

7928
6

-17-20191
-16-33280

29027
8964

-25-95622
20801
18297

72
1

-36-79274
14212
2628

16

R 4-333017 -1-719684 -5-74303 -9-57926 -16-28964 -25-1827 -36-126

Table 7.10

1.(0) /*'
(5) ,(6)

5
6
7
8
9

10

11-41641
828

34

1-533415
640672

6841
7013

6

7-56130
6-90054

82441
090

83

6-82083

-13-95481
-13-12422
-12-95067

3790
53
2

-12-9375

-21-43372
-18-52045
-17-88346

1929
681

77

-17-816

29
26
26

•51375
•53708
•05245

2103
023

- 3 9
- 3 7

• 86957
•05435

-36-71021
69449

R 11-41834 1-647016 - 2 6 0 2 -36

Table 7.11

Eigenvectors of the eigenvalue (if0) of Table 7.4

1
9
3
8

71 = 4

•000000
•348611
•763321
•466407

0
1

- 1
2

i
9
3
8
1

7 1 = 5

•000000
•353370
•775903
•758015
•303215

0
j

- 1
- 2
- 2

71 = 6

1000000
9-353447
3-776108
8-790189
1-324382
1-379120

0
- 1
- 1
- 2

2
- 3

7 1 = 7

1-OO00OO
9-353448
3-776109
8-790231
1-324555
1-390391
1-066697

0
- 1
- 1

2
2

- 3
4

7 1 = 8

1000000
9-353448
3-776109
8-790231
1-324555
1-390442
1-071557
6-289803

0
1

- 1
- 2
- 2
- 3
- 4
- 6

71 = 9

1 000000
9-353448
3-776109
8-790231
1-324555
1-390442
1-071570
6-307003
2-918673

0
- 1
- 1
- 2

2
- 3
- 4
- 6

7

Table 7.12

Comparison of theoretical and actual rates of convergence for (x(0) of Table 7.4

n

4
5
6

3-778196
3-780119
3-780151

8-4664 - 2
1-3032 - 2
1-3791 - 3

a

~ 6

e = In

V(4»2-D "

2-9866 - 1
4-5842 - 2
4-8438 - 3

e2

a(l - e2/a2)

1-4903 - 2
3-5025 - 4
3-9104 - 6

0-001923
0-000030
0000000
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