Experiences in using a Decomposition program

By E. M. L. Beale, P. A. B. Hughes, and R. E. Small*

We had a particular problem in oilfield operations to solve.

This problem naturally decomposed

into sub-problems, and this led us to develop Decomposition within the linear programming
system that we were using. It was of great help to us when writing the Decomposition program
to have this problem in mind. The development of the method went hand in hand with the
solution of the oilfield problem.

1. Outline of the problem

The problem concerned the production of oil from
several different fields to meet a fixed overall target over
a finite span of years. Typically we were concerned with
seven different fields supplying three outlets (ports or
refineries) over a span of twelve years.

The problem was formulated as a linear program,
the object being to meet the overall target and to maxi-
mize an expression representing the net profit over the
time span being considered. It naturally decomposed
into sub-problems because the linking equations between
the various fields were quite few in number.

Dantzig and Wolfe’s Decomposition principle shows
how to take advantage of the special structure of linear
programming problems that can be considered as
separate sub-problems with a relatively small number of
linking equations. (Dantzig and Wolfe (1960), Dantzig
and Wolfe (1961) and Dantzig (1963)). The linking
equations are grouped together into what is known as
the master problem, whilst each sub-problem contains
the constraints and equations that can naturally be
grouped together.

In this problem the operations of each field under
consideration were expressed in separate sub-problems.
The constraints in the sub-problems deal with the con-
struction of new production facilities in each of the
years being considered. These facilities include new oil
wells, and also plant such as gas/oil separators which
are required to handle the oil once it has reached the
surface. There are also equations representing the pro-
ductive capacity of both existing and new wells, and
constraints on the upper limits of the capacity of the
field. A solution to a sub-problem is a way of operating
a field, i.e. a set of annual productions with the cor-
responding investments required to make the productions
possible.

The master problem consists of the linking equations
dealing with the supply of oil from the fields to the
outlets. It also deals with the possibility of exploring
for new oilfields. And, of course, it contains the main
supply equations which say that the sum of productions
from all the fields in any year must equal the overall
target for that year.

* All of C-E-I-R Ltd., 30-31 Newman Street, London, W.1.

13

2. The Decomposition principle

The principle of Decomposition is by now quite well
known, but it is, perhaps, worth giving a very brief
description of it before going on to describe its use.
This will serve to clarify the terms that we are using.

It makes use of two fundamental facts. Firstly, a
polyhedron can be represented either as the inter-
section of a set of half spaces or as the set of all possible
linear combinations of its vertices. So the constraints
that form a sub-problem can be replaced if one says
that the variables of the sub-problem must take values
represented by positive linear combinations of the
vertices of the sub-problem. If the sub-problem is of
any size, it is, of course, not feasible to consider all the
vertices when making these linear combinations. A very
restricted set can be used so long as it covers the region
of the polyhedron with which we are concerned when
seeking the optimum solution. A vertex of a sub-
problem is the same as a basic feasible solution to that
problem, and when we include it in the master program
it is called a proposal.

We must now consider how we are going to chose
relevant proposals from a sub-problem during the
course of the computation. We use the second funda-
mental fact, that an optimal solution to a linear pro-
gramming problem remains optimal if some or all of
its constraints are withdrawn, and the variable terms in
such constraints are multiplied by suitable Lagrange
multipliers, or “m-values,” and added to the objective
function. So the procedure is to solve the master
problem with a restricted set of proposals from the sub-
problems, and obtain the corresponding m-values on the
rows which are common to both the master problem
and the sub-problem. The sub-problems can then be
solved with the common row constraints replaced by
additions (based on these w-values) to their objective
functions. For each sub-problem the vertex correspond-
ing to the optimum solution will form an additional
proposal to the master problem. The master problem
is then re-solved and the new set of z-values on the
common rows are used to repeat the cycle. The step
from one optimal solution of the master problem to the
next one (based on a new set of proposals) is called a
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major iteration, to distinguish it from a normal iteration
of the simplex method which we shall call a minor
iteration.

This procedure terminates when none of the pro-
posals generated by the sub-problems are worth iatro-
ducing into the basis of master problem. When this is
the case the w-values on the common rows in the master
problem will remain unaltered, and so no new proposals
will be generated if we make a further pass through the
sub-problems. It can be shown quite easily that this
whole procedure must terminate in a finite number of
major iterations and that it must produce the overall
optimum solution. Rigorous descriptions and proofs
can be found in the references that we have given.

3. Development of the algorithm

We were faced with the oilfield production problem
that we have described. As we have shown, it seemed
to decompose naturally into sub-problems, and so we
set about introducing Decomposition into our existing
linear programming system, LP/90/94. A twelve-year
problem could have been solved in un-decomposed form,
but we believed that the machine time required would
be excessive. As seems usual in such work, the answers
were required “as soon as possible.” Nevertheless we
decided that it would be worth the effort of writing the
decomposition program for this particular problem so
long as we did not try to be too elaborate.

Wherever possible we made use of features of our
existing LP code, some of which proved extremely
helpful. At an early stage we took some short cuts for
the convenience of programming. These fortunately
proved an advantage when later we came to make
changes to the system.

The first short cut was to keep the common rows as
explicit separate rows in all the sub-problems, and to
use a highly composite objective function. The alterna-
tive would have been, in each major iteration, to combine
the contributions from the common rows to the sub-
problem’s objective functions into a single cost row.
The former method, though a little more wasteful of
computer storage, was easy to program as it used a
scaling feature already present in LP/90/94 with only
very minor alterations. This decision proved fortunate
later, when we decided to submit intermediate solutions
as proposals to the master problem. Any linear pro-
gramming routine always produces a current right-hand
side on all active rows of the problem. These current
values on the composite cost rows of a sub-problem are
precisely the coefficients that we require in the common
rows of the master problem if we are to use the inter-
mediate solution as a proposal.

Another of the short cuts was not to delete any
proposals once they had been entered into the master
problem. This decision was taken in the first instance
out of laziness. It was justified on the grounds that in
the early stages there would not be too many proposals
in the master problem, whilst in the later stages, though
there would be a fair accumulation of proposals, this
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would not matter too much since only a few minor
iterations would be required in the master problem. In
fact, we believe that the disadvantages of accumulating
a large number of proposals are far outweighed by the
advantages of giving the master problem a large range
of choices.

A third short cut was used to obtain the final solutions
to the sub-problems. At the overall optimum, we have
in the master problem the weights that are attached to
the various proposals from each sub-problem. The
natural way to find the corresponding solution would be
just to compute the weighted sum of these proposals
from each sub-problem. This has the disadvantage that
the program has to keep track of the complete solution
of the sub-problem, each time that that solution is used
as a proposal. In our problem, for example, the oil
productions in each year from the field are the only
entries required in the common rows (apart from the
cost of this schedule which goes in the overall objective
function). The complete solution would have all the
details of the various investments required to make the
schedule possible. We decided that rather than keep
track of all this information each time a solution was
used as a proposal, it was easiest to write a special piece
of program to enable us to re-solve a sub-problem by
working from the master problem solution. The
program forms right-hand sides for the sub-problem
common rows. In this case these right-hand sides form
the yearly production schedule for the field (which comes
from the multiplication of each proposal from that field
that appears in the optimum basis, by its weight in the
optimum solution, and the summing of the resultant
vectors).

This solution method for the sub-problems was
included for computational convenience. It naturally
followed from the ““getoff”” feature of LP/90/94 that we
were already using. An LP system must be able to save
a problem in packed form on magnetic tape in such a
way that it is easy to restart the problem from that tape.
We used this feature to enable us to get a sub-problem
off the computer, once it had been solved, and to write
it on to tape in a form that made it easy to call back
and restart the problem at the next major iteration.

So we started to try to solve some trial problems. The
only special trick that we used was to incorporate what
one might have considered as the most important sub-
problem into the master problem. At first we put into
the master problem the largest of the fields; later we
changed the formulation and included Distribution and
Exploration in the master and had all the fields in the
sub-problems. This procedure obviously slows down the
master problem, but we believe that it reduces the
number of major iterations required, since it provides
more realistic and stable =#-values on the common rows.
It gives the master problem some flexibility to adjust for
deficiencies or peculiarities in the available sets of pro-
posals from the sub-problems.

We soon found, as others have done before us, that
a straightforward Decomposition system was so slow as
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to be more or less useless. The main trouble was that,
despite including one of the fields in the master problem,
the 7r-values on the common rows oscillated wildly from
one major iteration to another. For the first few major
iterations the master problem did not have a sufficient
supply of sensible proposals from the sub-problems
from which to chose. This meant that oil would be very
much at a premium in some years, whilst there would
be a glut in others. This behaviour was reflected by
widely varying m-values in the common rows. These
mw-values are equivalent to the price which the master
problem is prepared to pay for oil from the various
fields in the years under consideration. If, for example,
the =-value in the master problem optimum on the
common row that defines the production from a field in
a certain year is negative, then this will lead to zero
production from that field in that year in the next
optimum solution to the sub-problem. So we are
trapped in a circle from which we can only slowly
emerge if at all. A poor set of alternative proposals in
the master problem gives rise to erratic =-values on the
common rows. These in turn lead to nonsensical
optimum solutions to those sub-problems (particularly
to blank years) which form the additional set of pro-
posals for that major iteration. This new set will tend
to have blanks in the years where before there were
gluts, and vice versa. So now the w-values will be
inclined to veer in the opposite direction—and so on.

We decided that we must give the master problem a
wider choice of alternative proposals, particularly during
the first few major iterations. We altered the program
so as to allow us to introduce intermediate solutions to
the sub-problems as proposals to the master problem.
When doing this, the short cuts that we had taken
initially worked to our advantage, and the program
alterations were quite simple. We allowed the fre-
quency of the use of intermediate solutions to be con-
trolled during computation from the on-line card reader.
This was of great help in experimentation. We felt that
during the early stages we should submit these inter-
mediate solutions very frequently so as to give the master
problem a chance to settle down quickly. As the
solution proceeded, in the interests of keeping down the
size of the master problem, we reduced the frequency.
And then in the final stages, when we were very close
to the overall optimum and when the sub-problems
required only very few minor iterations during each
major iteration, we increased the frequency again. This
then gave the master problem a wide set of proposals
in the region close to the optimum solution with which
to form the overall optimum.

This change to our program helped to speed up the
process, but not very much. In the early stages, a high
proportion of the intermediate solutions were nonsense
solutions. We realized, on looking at these proposals,
that by iterating to the optimum solution of the sub-
problems, often we were not only wasting time but we
were perhaps doing actual harm by providing sets of
bad proposals. Next we decided to introduce a facility
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to cut off sub-problems before they reached their optima.
This proved of very great help in speeding up the process.

Just as for the frequency of the proposals, we included
the cut off feature in such a way that it could be con-
trolled from the on-line card reader. At the beginning
of each major iteration we could specify an upper bound
on the number of minor iterations per sub-problem. As
the computation proceeded we progressively relaxed
this bound so that after about the fourth major iteration
it was usually inoperative. It was particularly useful
during the first two major iterations. It had the double
effect of helping the =-values to settle down faster, and
of cutting out a large number of wasteful minor iterations
in the sub-problems.

4, The matrix generator

Though we had made considerable reductions to the
running time it was apparent that we could make further
improvements if only we could provide good enough
trial solutions. To start the process we must provide a
set of m-values to form the initial objective functions for
the sub-problems. In order to do this we solve the
master problem with a set of trial solutions as proposals.
The better the set of trial solutions that we provide, the
more realistic will be the initial set of w-values, and
hence the better the sets of proposals produced during
the first major iteration.

It was clear that a single trial proposal from each
sub-problem was quite useless unless it was realistically
priced. Even then it was fairly useless since it did not
provide the master problem with enough flexibility to
deduce realistic differential coefficients, or m-values, on
the common rows. We now concentrated on producing
a comprehensive set of trial proposals, each realistically
priced, of the form that naturally lead to useful linear
combinations. Here we were greatly helped by the
structure of the problem. The sub-problems, although
formally LP problems, could in fact be solved by
elementary means for given contributions to the common
rows. If we specified for a field the production in each
of the years, then it was quite easy to compute the
investments required to make the production possible,
and hence to compute its cost (or price). We suspect
that this is not a particularly unusual feature of
LP problems that lead naturally to a decomposed
formulation.

We now concentrated on incorporating in the matrix
generator program, routines to provide good sets of
realistically priced trial solutions and good starting bases
for the sub-problems. We were helped by our earlier
decision on the solving of the sub-problems. This
meant that we did not have to label the trial solutions
with their component vectors in the sub-problems. We
just needed the production schedule and its cost.

As we developed the techniques of providing sets of
trial solutions, we became more skilled at giving the
problem a good start. The importance of this is shown
by the considerable saving in running time if one can
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generate w-values at the start of the problem that are
quite like the z-values at the final optimum.

5. An example

The three sets of graphs, Figs. 1, 2 and 3, illustrate
various intermediate stages in one of the sub-problems
during a production run of the model. Each figure has
four separate graphs. These relate to the first, second,
third and fourteenth major iterations. The problem
was considered close enough to the final optimum
solution to make it not worth-while going on beyond
fourteen major iterations.

Fig. 1 shows the w-values on the sub-problem common
rows at the previous optimum to the master problem.

Fig. 2 shows the annual rates of production in the
pool at the end of the iterating process for the sub-
problem. The m-values shown in Fig. 1 are incorporated
in the objective function for the sub-problem. The sub-
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problem is then solved, and the rates of production shown
are part of the solution. This may or may not be an
optimum solution, depending on whether or not the
sub-problem has been cut off before reaching its optimum.
In Fig. 2 the solutions for the first and second major
iterations are not optima, and those for the third and
fourteenth major iterations are optima.

Fig. 3 shows the annual rates of production for the
pool in the optimum solution to the master problem at
the end of the major iteration.

The sequence runs from Fig. 1 to Fig. 2 to Fig. 3.
The w-values shown in Fig. 1 lead to the generation of
the proposal shown in Fig. 2, and this proposal is then
available to the master problem when deriving the
optimum schedule for the pool as shown in Fig. 3.

The first set of w-values comes from the first optimum
solution to the master problem. At that stage the
master problem has available only trial solutions pro-
duced by the matrix generator. The smoothness of this
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Fig. 2.—Sub-program proposal

first set of w-values is a measure of our success in making
a good start towards solving the problem. In the
example shown, the w-values are negative in the third,
ninth and eleventh years. This leads to the first proposal
shown in Fig. 2. It has zero rates of production in the
third and eleventh years. The blank eleventh year is a
nonsensical result and it is quickly eliminated from the
proposals in subsequent major iterations. The sharp
dip in production in the ninth year is also a nonsensical
result. This rate of production would have been zero
if we had allowed the sub-problem to continue to its
optimum on the first major iteration. As it was, we cut
off the sub-problem after ten minor iterations. This
saves the time which would be wasted in the sub-
problems when iterating under a very crude set of
m-values. The set of w-values for the second major

iteration has m-values for the ninth, tenth and eleventh
The fluctuations

years quite close to their final values.

in the m-values for the end years is fairly soon smoothed
out.

The dip in the third year is in a different category.
Fig. 3 shows that, in the final optimum solution for this
field, the rate of production does dip in the first few
years. The rate of production in the first year under
consideration was more or less fixed. In subsequent
years the production could be switched to other fields
by building extra capacity. That was, in this case, the
optimum solution, and the reserves of the field shown
in the example were saved for future use in meeting the
high overall target of the last few years.

The sub-problem’s optimum production rates for the
early years were very sensitive to small changes in the
m-values. Once the =-value for any particular year
drops below the unit production cost, then the sub-
problem’s optimum solution will have zero production
for that year. The second year in the third major
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iteration is an example of a positive but small =-value
leading to a zero rate of production.

In this example we have only shown a selection of the
major iterations, and for each iteration only the last
proposal from the sub-problem. We have not attempted
to show in detail the full set of proposals nor their use
in the master problem optima. But it is perhaps worth
making a few points on this. The first proposal shown
was never incorporated in a master problem optimum.
The dips in the ninth and eleventh years make it a
particularly unattractive schedule. The proposals from
the second and third major iterations were included in
master problem optima. They combined with some of
the trial proposals that we had provided to give the dips
in production shown in Fig. 3. Gradually the solution
to the problem settled down. The trial solutions were
used less and less, and the newly generated proposals
more and more. The final master problem optimum
used proposals from the fourth, sixth, seventh, eighth
and tenth major iterations. Those proposals that
entered with the largest weights were not, in fact, sub-
problem optima. This illustrates the value of providing
the master problem with a wide choice of proposals,
and not confining the set to sub-problem optima.

6. Some features of the program

The Decomposition program has been added to
LP/90/94 in such a way that all the regular features of
the LP program are available during execution of the
Decomposition program. Thus the maximum row size
for the master problem or for any sub-problem (including
the number of common rows) is 1,023. As we have
already explained, there are two features of LP/90/94
which some people consider old-fashioned but which we
find are extremely useful when one is extending the
system to solve new types of problems: firstly, the use
of six character names rather than sequence numbers
to identify vectors, and secondly the routine use of
control cards read on-line to govern the operation of
the program. It proved very useful in the Decompo-
sition program to be able to label proposals explicitly
with the name of the sub-problem or origin and the
number of the proposal. The label also incorporates a
“flag” to indicate that this is a proposal. Two digits
were assigned to the sub-problem number; this gives a
capacity of 99 sub-problems.

The maximum number of rows which can be handled
by this program is obviously about 99,000. LP/90/94
has no restriction on the number of vectors which may
be used, provided that the whole problem will fit on one
reel of magnetic tape. Facilities are included in the
program to enable one to revise any part of the problem,
and to remove existing proposals from the master
problem if these are invalidated by such a revision.

References

The ability to control the operation of the program
from the on-line card reader has a very great advan-
tage over present controls in the development of
operating techniques for this type of program. One
can read the on-line printer to obtain information on
the progress of the calculation, and place appropriate
control cards in the card-reader at that time. One can
also change one’s mind very easily by substituting one
card for another. All control cards are printed on-
and off-line to provide a complete record of a run.

7. Some running experiences

A number of matrices have been decomposed, and
their solution has been attempted by the use of this
program. It soon became apparent that the control
cards used were absolutely critical in minimizing the
overall running time. For instance, it is obvious that
if the master problem is filled with proposals, all very
similar and all far from the optimum during the early
stages of a run, the program will spend a large part of
each minor iteration in the master problem pricing these
proposals only to discover that they aren’t worth con-
sidering. Similarly, until the master problem becomes
feasible and the w-vector represents the marginal costs,
in general the sub-problems will not move towards the
desired optimum, and so these should be restricted in
the number of minor iterations they are allowed to make.
Once the master problem is feasible and the -vector has
settled down, the controls in use have less effect on the
overall running time, though a rather poor choice will
increase the number of major iterations performed in
order to reach the global optimum.

The Decomposition program shows a saving in run-
ning time for problems of the order of 300 to 500 rows.
The exact point at which the program becomes economic
compared with LP/90/94 depends entirely on the prob-
lems under consideration. When using an 1IBM 7090,
a particular 450-row problem which took 40 minutes to
solve using LP/90/94 was solved in 37 minutes when
decomposed.

Before we had the Decomposition program working
we made a ten-year run on the oilfield problem in
undecomposed form in about 5 hours. Subsequently
we solved twelve-year runs on this problem when
decomposed in about two hours. To make a direct
comparison of these two times is unduly flattering to the
Decomposition program. The twelve-year runs, though
larger, were “‘easier” in the sense that the various field
productions were more constrained. More importantly,
we were able by that stage to specify very good starting
bases and sets of trial solutions. We could not, of
course, have specified trial solutions to the undecom-
posed ten-year problem but, in the light of subsequent
runs, we could have specified a better starting basis.
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