The efficient administration of blocks in ALGOL

By P. A. Samet*

A scheme for administration of ALGOL blocks is proposed, based on the use of block numbers
rather than block levels. It is claimed that this method simplifies the organization of procedure

calls, including recursive calls.

The block structure of ALGOL, with its nested levels
of nomenclature, is invaluable to the programmer but
gives rise to difficulties in implementation. Briefly, the
most serious troubles stem from the fact that reference
must only be made to blocks with currently valid declara-
tions. Within a procedure, and in particular a recursive
procedure, it is not always easy to discover which blocks
are active. As far as the procedure body is concerned
the valid declarations are those valid at the time the
procedure is declared, whereas the declarations valid for
the actual parameters are those valid at the time of the
procedure call. Particularly troublesome are go to
statements leading out of the procedure, especially if
used recursively or if there is recursion involving several
procedures, because then it is necessary to reach
the labelled statement in the correct activation of its
block as well as restoring the declarations for the appro-
priate activations of the enclosing blocks.

The only well-known method of achieving this re-
activation is by means of block levels, where an
explicit record is kept of the levels of nomenclature
current at any one time. This is the method used by
Dijkstra (1961), and also by Randell and Russell (1964)
a preliminary account of whose work is given by Randell.
The need to update this record, calied DISPLAY by
Randell and Russell, every time a block or procedure
is entered or left makes this extremely time-consuming.
The method of van der Mey (1962), using ranks, is
basically similar and has the same disadvantage.

In this paper I propose an alternative method of
achieving the correct reactivation without using block
levels. The method should therefore be an efficient
way of controlling block structure. Two ideas are
involved: the use of ‘block numbers’, and the storage
of some administrative information in the block itself
instead of in a stack.

(With few exceptions, details of compiler techniques
are guarded like the secrets of a primitive religion; the
method proposed may be known to a restricted group
of initiates, but I have not met anyone familiar with it.)

Block level and block number: translation

At translation time it is very easy to keep a record
of how many levels of nomenclature are current at any
point in the program, as this is simply the number of

* Direcior, Computation Laboratory, The University, Southampton.

begins (followed by declarations) not yet cancelled by
their matching ends. If a stack is used for the declara-
tions it is in fact unnecessary to use these block levels
explicitly during translation. This follows because the
only declarations available when an identifier is being
translated are the declarations of the enclosing blocks,
which are of course the only declarations valid. The
declaration list has to be scanned in reverse order to
find the most recent declaration of an identifier, in case
of clashes of names.

However, just as easy to determine as block levels are
actual block numbers, which are obtained by a simple
count of declarations. This block number can be used,
as explained below, to determine the block to which a
label refers. Identifiers other than labels need only
refer to a place in the stack relative to the stack pointer
current at entry to the block in which they are declared.
The block number as defined here is different from the
block number (BN) used by Dijkstra (1961), which is
rather more akin to what I call block level.

At present the only use of block numbers that appears
to be made by translators is indicating the location of
errors.

Block level and block number: processing

The system of translation indicated above ensures
that block levels are irrelevant at run-time, as references
can only be made to those identifiers that are actually
allowed. The problem is to give easy access to the
locations holding variables, which can be done if we
know how to reach the appropriate value of a stack
pointer. The schemes described by Dijkstra, and
Randell and Russell all have a vector of stack pointer
values, corresponding to the block levels in use.

It is, however, more advantageous to store these
block stack pointers in the blocks to which they belong.
References to simple variables and arrays are translated
to include a call for the relevant stack pointer from a
particular (fixed) location, which can be implemented
very conveniently with indirect addressing.

The administration of recursion now becomes an
almost trivial matter. All that is necessary is that at
entry to a block the block stack pointer corresponding
to the previous activation of the block is stored away
safely in the stack before being replaced by the value

20z UoJel € Uo 1senB Aq 928681/12/1/8/2101e/|ufoo/w oo dno-oiwapeoe)/:sdiy Woly papPEC|UMOQ

Blocks in ALGOL

corresponding to the new activation. It will also be
necessary to store the address within the block where
the stack pointer is held, for use at block exit. (I am
not concerned here with the link data needed for pro-
cedure exit, as this has nothing to do with recursion.)
The only limit on the depth of recursion (or number
of block levels) is now dictated by the store available,
not by the arbitrary number of places reserved for the
vector of levels in use. At exit from a block, the stack
pointer of the previous activation is restored. It will
be noticed that there is now no mention at all of the
block level at which an identifier is declared.

In some implementations of ALGOL considerable
difficulty is experienced in relating the static form of the
program, as written, with the dynamic form, as obeyed.
Randell and Russell, for instance, do this by ‘static’
and ‘dynamic chains’ which have to be continually
updated and matched. The scheme proposed in this
paper avoids this problem completely. At run-time it
is the written form of the program that contains all the
information about currently active blocks and proce-
dures, whereas everything about dormant blocks is
kept in the stack.

So far, nothing bhas been said about labels. It is here
that the actual block number can be used. A word in
the block is reserved for the block number as well as
for the block stack pointer. A label has to be translated
into an address in any case, and if we translate a label
into the pair (address, block number) the processor can
easily determine whether the label’s block number is
the number of the current block. If it is, the go to
statement is just a jump. If, however, the go to state-
ment involves an unnatural block exit we have to
restore the stack pointer of the previous activation of
the current block, and examine the block number of the
block in which the current block was called. This means
that the system of chaining in the stack has to include
information about the stack pointer of the immediately
enclosing block (of a block or procedure call). This
information is required for normal block exit, in any
case, so that nothing extra is required. By going back
along the chain in this manner, always restoring the
stack pointers of previous activations, we must arrive
at the most recent activation of the required block, and
at the same time restore the declarations of the sur-
rounding blocks. There is no need whatever to count
the depth of any recursion involved, as in some imple-
mentations of ALGOL.

An alternative, equally simple, system has been sug-
gested to me by one of my colleagues, A. R. F. Redda-
way. To effect the restoration of block stack pointers
it is necessary to know where these are to be stored in
their respective blocks. This address can be used in the
label, which is then compiled as the pair

(address of labelled statement,
address of block stack pointer).

We have found the right block when the stack pointer
comes from the place indicated. The advantage is that

22

this address has to be used in any case for restoring the
previous activation. Block numbers, however, may be
easier to manipulate, especially if the program has to be
segmented.

It may be advantageous to single out the labels of the
main program, which do not occur inside a procedure.
These cannot be involved in any recursion and so a
jump to one of them can be made without having to
restore stack pointers of intervening blocks.

General comment on labels

For a compiler that is to allow easy alterations of
compiled programs without the need to recompile the
whole source program, it is probably helpful if labels
are translated so as to give the number of the label in
its own block. The effect is that all labels behave as if
they are elements of a switch list.

Label as formal parameter of a procedure

There is one case in which the straightforward appli-
cation of the system proposed would give incorrect
behaviour. If a recursive procedure has a label as
formal parameter it is possible for the actual parameter
of an inner call to be a label of the procedure itself, as
in the following example:

procedure P (alpha); label alpha;
begin

P (omega);

go to alpha;
omega:

end.

The dots stand for parts of the procedure, including
conditional statements which can by-pass the inner call
of P. At the inner call of P the go to alpha has become,
in effect, go to omega and should cause an exit from the
inner call of P. Simple examination of the block number
would fail to do this. The remedy, however, is very
simple. The object program of a formal parameter
which is a label has to perform one exit from the pro-
cedure (i.e. one restoration of block stack pointer, etc.)
before examining the block number,

Further remarks

The system I have described has some similarities
with the method used by Irons and Feurzeig (1961), but
is more flexible, as there is no need for a block to occupy
consecutive locations in the store. This is relevant
when a compiled program has to be amended, as cor-
rections to an inner block can be joined on at the end

20z UoJel € Uo 1senB Aq 928681/12/1/8/2101e/|ufoo/w oo dno-oiwapeoe)/:sdiy Woly papPEC|UMOQ

Blocks in ALGOL

without having to recompile the outer blocks. (The
only corrections to which this method can be applied
involve no changes in declarations or labels, although
labels can be accommodated by the suggestion above, of
treating them like a switch list.)

References
DuUKSTRA, E. W, (1961).

Acknowledgements

I am grateful to my colleagues, A. R. F. Reddaway
and P. J. Taylor, for helpful suggestions. Some
obscurities in the original manuscript have been clarified
at the suggestion of a referee.

“An ALGOL Translator for the X1,” MTW, Vol. 2, p. 54-6; and MTW Vol. 3, pp. 115-9.

(See also Annual Review of Automatic Programming, No. 3, 1963, p. 329.)
IroNs, E. T., and FEUrRzEIG, W. (1961). “Comments on the Implementation of Recursive Procedures and Blocks in ALGOL 60,”

Comm. A.C.M., Vol. 4, No. 1, pp. 65-9.

RANDELL, B., and RusseLL, L. J. (1964). ALGOL 60 Implementation, Academic Press, London.

RANDELL, B. (1964).
Press, London.

*The Whetstone KDF 9 ALGOL Translator,” Chap. 8 of Introduction to System Programming, Academic

VAN DER MEY, G. (1962). ‘“Process for an ALGOL Translator,” Report 164 MA, Dr. Neher Laboratorium, PTT, Leidshendam,

Holland.

Book Review

Extended Mercury Autocode (EMA) for I.C.T. Atlas and Orion
Computers, 1.C.T. Ltd., 68 Newman Street, London,
W.1 (199 -+ liv pages) 25s.

Readers and subscribers to this Journal who received the

first two volumes will remember the original contributions

by Mr. R. A. Brooker and others of Manchester University
in 1957/59 to the development of autocodes for the Ferranti

MK 1 and Mercury computers. Further contributions have

been made by other Mercury users particularly at CERN

Geneva, AERE Harwell, University of London, R.A.E.

Farnborough, and the Ferranti programming development

group taken over by I.C.T. in 1963. EMA is thus possibly in

wider use in European scientific computing centres and
industrial research establishments than many other pro-
gramming languages. As a language which is problem-
oriented it can be taught to G.C.E.-A level students in three
days: programs are written in algebra, without the stilted

English of certain other programming languages. It pre-

serves sufficient contact with the organization of a computer

with two-level store and magnetic-tape backing, to form a

good fundamental course for selection of programmers to

be trained in basic machine code, in which case the EMA
course can usefully be extended to occupy five days with
exercises.

Compilers are already available for Mercury, Orion,
Atlas I and 1.C.T. 1101/1301 computers and will be made
available for the I.C.T. 1900 series: for the smaller machine
configurations, facilities are restricted, but on the larger
machines there is available 5/7-track paper-tape input and
output, magnetic-tape backing store, lineprinter output and
punched-card input. With a tape-editing set costing between
£700 and £2500, any research, engineering or statistical depart -
ment can prepare its own program and data tapes, hire time
on an Atlas or Orion prepared to offer a 24-hour turnround,
and receive back its results in tape form making multiple
copies locally. Many such centres have Telex or other
data-transmission facilities. Thus EMA is already a live and
fully-developed European programming language, useful
also for basic training in computer work. 1.C.T.(the publishers)
are prepared to offer the manual at a discount for use on
approved programming courses.

The manual consists of seven sections. The first contains
an introduction to digital computers, program layout, arith-

23

metic operations with floating-point variables and integers,
jumps and loops, input and output orders, text output, and
the use of subroutines. Section 2 deals with more advanced
subroutines and routines containing several chapters, dumping
of integers and variables in backing store, manipulation of
characters and tables, selection and relinquishing of input/out-
put channels on multi-programmed installations, and the
use of magnetic tape. The third section deals with such
specialized features as integration of differential equations,
the more common matrix operations, generation of pseudo-
random numbers (normal or rectangular distributions),
complex arithmetic, double-precision arithmetic and logical
operations (e.g. counting bits and masking out packed data).

Section 4 covers preparation and development of pro-
grams, layout of input documents and paper-tape input/out-
put or line printer. The load and go and the compiling/running
alternatives are outlined and the monitoring facilities are
described: these are so extensive that a program usually runs
at the second attempt if not the first, producing some results,
even if these fall short of or exceed the programmers
expectations! Query and trace printing are available for
following the path of calculations which misfire.

Sections S and 6 are devoted to the use of Atlas and
Orion, including the incorporation of basic machine-code
routines and other facilities peculiar to each computer. The
Autocode List Processing facilities, described by D. C. Cooper
and H. Whitfield in 1962 for the CHLF 3 version of Mercury
Autocode (Computer Journal, Vol. 5, pp. 28-32), are available
on Atlas. On Orion, programs can be compiled in parts
and extra chapters incorporated: this has been found to be a
useful feature in certain statistical programs, e.g. regression
analysis, where the development of a comprehensive pro-
cedure naturally falls into several stages (chapters).

Section 7 and the Appendices include an alphabetical check
list of permissible order formats, summarised programming
information and an index. At a time when there is so much
ill-informed or misguided newspaper comment about soft-
ware facilities not being available for British computers on
time, it is pleasing to report that the compilers for EMA on
the machines described in this manual are fully developed,
subject only to minor diversions from mispunched tapes,
which are being methodically cleared.

H. W. GEARING

20z UoJel € Uo 1senB Aq 928681/12/1/8/2101e/|ufoo/w oo dno-oiwapeoe)/:sdiy Woly papPEC|UMOQ

