A small computer for the direct processing of FORTRAN

statements

By Alan J. Melbourne* and John M. Pugmiref

A small computer with a microprogrammed FORTRAN compiler is described. A comparison
is made with a conventional computer of similar speed which uses a software compiler.

Scientists and engineers in university and industry
frequently encounter problems too lengthy or complex
to be conveniently handled by a desk-calculator, but
which are small by computer standards. Tedious
though a hand-calculation may be, it may nevertheless
be preferable to a computer solution unless several
conditions can be satisfied.

(i) The computer must be easy to program. The
user, although qualified technically, may be
but an inexperienced programmer unable to
undergo special training for the occasional usage
envisaged. High-level languages such as ALGOL
or FORTRAN have been expressly created for
ease of use, and have the additional advantage
that programs so written are easily readable.

(ii) The computer must be readily available. The
nature of scientific work makes accurate fore-
casting of computer time difficult. For this
reason, renting time on a large installation is not
entirely satisfactory because of the tight job-
scheduling involved. A small computer locally
installed seems preferable if provided with a
compiler. Compilation, however, is a time-
consuming process and may take longer than
running the final compiled program. It should
be reduced to a minimum.

(iti)) Quick and comprehensive correcting facilities
must be provided. An inexperienced and infre-
quent programmer must be expected to make
mistakes. If each mistake should involve a
complete or partial recompilation, considerable
time will be wasted, particularly if the object
program is only to be run once.

(iv) The installation (including compiler facilities)
must be low-cost. It is envisaged that the
computer be shared between several groups; due
to the unpredictability of demand there must
be periods of idleness to provide reasonable
availability.

A machine-design philosophy is here outlined which
aims at providing immediate problem-solving facilities
at the disposal of the FORTRAN programmer. The
internal language of the machine has essentially the

same structure as FORTRAN, which means that the
“compiler” is small: small enough to be incorporated
economically in the control unit. Embodied in control
circuitry rather than core-storage, the compiler is thus
extremely fast, and “compilation time” is easily absorbed
within the mechnical delays inherent in the program input
procedure.

The only input-output device needed is a typewriter,
and programs can be debugged and corrected directly
at the typewriter console, without re-compilation.

Machine language

FORTRAN statements vary considerably in length
and structure, and consist of delimiters and identifiers
which are themselves of variable length. Some delimiters
correspond to a defined computer operation; others
serve as identification of statement types.

The stored form of the FORTRAN statement differs
from the user’s form in the following respects:

(i) all identifiers (including array names) are replaced
by storage addresses;

(ii) delimiters initiating a chain of control commands
are replaced by the control-unit address of that
command sequence;

(iii) the identification delimiters are not stored;

(iv) arithmetic statements are converted into Reverse
Polish notation; this could equally well be effected
on execution, but would be more time-consuming.

Core storage is organized in 16-bit bytes, the mode of
each being determined by the four high-order bits, thus:

(a) operator, the remaining 12 bits form the control
sequence address;

(b) numeric, 4 decimal (4-bits) digits, representing
either data or a storage address;

(¢) alphabetic, 2 alpha-numeric characters, each of
8 bits.

The general instruction form is therefore an operator
byte followed by a string of numeric bytes, and bears a
close structural resemblance to the original FORTRAN
statement. The arithmetic statement is treated as a

* IBM World Trade Laboratories (Great Britain) Ltd., Hursley Park, Nr. Winchester, Hants.

t Compagnie IBM France, 5, Place Vendome, Paris 1¢”, France.

24

20z UoJel € U0 1senB Aq L #8681/t2/1/8/e101e/|ufoo/w oo dno-oiwapeoe)/:sdiy Woly papPEO|UMOQ

Direct processing of FORTRAN

string of independent substatements terminated by “="’,
the “‘store result” operator. Subscript parentheses and
commas are replaced by array operators: other paren-
theses are removed.

Implementation

Control is by microprogram, held in fixed-store.
Fixed and floating-point arithmetic are inherent. The
data flow is unremarkable, comprising five 16-bit
registers. Any of 100 reserved storage locations (RSL)
may be directly addressed by the microprogram, and act
as control registers and pointers.

The microprogram creates a push-down stack in
storage by assigning a RSL to control allocation of
space to stack entries. The RSL contains the address
of the current stack extreme; this address can only be
modified by the microprogram by an amount equal to
the size of one stack entry.

The word-length is fixed at m bytes throughout a
given program. The value of m is selected at the
operators’ console: 2 << m < 9.

Program acceptance

In the basic machine with typewriter input, each
FORTRAN delimiter is assigned one keyboard position.
Depressing the key initiates automatic printout of the
delimiter name, whilst an associated 1-byte operator is
inserted in Instruction Storage in the location imme-
diately following the previous (translated) statement.

This operator is the address of the translation micro-
program for the current statement type. Translation is
split into two phases: Primary and Secondary.

Primary translation
The principal activities during the first phase are:

(a) checking the incoming statement for errors;

(b) normalization, packing, and justification of
incoming quantities into a standardized form,
viz.: m bytes for constants, 3 bytes for identifiers,
1 byte for statement numbers;

(¢) recognition of delimiters and replacement of each
by the address of the corresponding section of the
Secondary Translation microprogram.

Secondary translation

The second phase scans the standardized form pro-
duced by Primary Translation and performs the following
principal activities:

(i) Creation of the final form of the statement in
Instruction Storage. In the case of arithmetic
statements and subscript expressions this involves
a conversion into a Reverse Polish form.

(i) Allocation of space in Data Storage for all identi-
fiers, function arguments and arrays.

(iii) Construction of a Statement Number table
showing the correspondence between statement
addresses in the source program and in core
storage.

Instruction storage

The translated form of the statements may be divided
into three categories:

(a) Fixed length and format: e.g. DO nl = m, my, m,
which always occupies 6 bytes.

(b) Variable length, fixed format: e.g. READ, A, B, C.
The microprogram detects the end of statement by
the initial operator of the following statement.

(¢) Variable length and format: arithmetic statements
and function statements, which may be considered
as strings of unary and binary operators, ter-
minated by detection of the initial operator of
the following statement. All arithmetic statements
start with a special machine-inserted operator
denoted by +

For example: A = B + FNX(C % D, U. V) will
be held as 15 bytes
+ bfixcd % fywlfs + a =

where b, ¢, d, etc., are machine addresses, x is the
address of the Data Storage area allocated to FNX.
The operators fi, /5, f3 correspond to ()
respectively and are effectively “‘begin function”,
“end argument” and “end function”.

Data storage

As Instruction Storage is built up from the low-order
extreme of core storage, so the Data Storage is allotted
from the high extreme.

Simple variables and constants are allocated m bytes.
The variable name is inserted in the 3 high-order byte
locations (names are restricted to 4 alphanumeric
characters if m = 2). A constant value is regarded as
its name which thus occupies m bytes.

The statement DIMENSION ARRAY (I, J K) is
“executed” during Program Acceptance, and allocates
space as shown:

IT%]J%K¥m
———
1|7 K é l Name | @j
1 - | N
array
indicator

Functions may be defined by Function Subprograms
or in arithmetic statements. In both cases, a Data
Storage area is allocated as shown:

last arg l l Ist arg l function ' x f #

. !

f ;

20z UoJel € U0 1senB Aq L #8681/t2/1/8/e101e/|ufoo/w oo dno-oiwapeoe)/:sdiy Woly papPEO|UMOQ

Direct processing of FORTRAN

where x is the address of the function subprogram in
Instruction Storage. The FUNCTION Statement itself
is not translated. The marker # takes one of two
values according to whether the function is being cur-
rently defined, or is already defined.

The special characters @, # are used to skip function
array areas in a normal identifier scan.

At the end of Program Acceptance, locations 100 to
1S4 contain the machine version of the input program;
locations DS, to M (M is the maximum machine address)
contain data space for variables, arrays and functions.
Locations SN, to SN; contain the Statement Number
Table.

If the DEBUG console switch is on, the Statement
Number Table is retained and a new Symbol Table
created in which each identifier is paired with its machine
address; both tables are then retained during the execu-
tion phase.

Program execution

The execution phase is supervised by a Master Micro-
program which delegates control to an individual state-
ment microprogram.

For the purpose two stacks are created:

(i) Instruction Stack, starting at IS, and increasing in
the direction of storage address M.

(ii) Data Stack, starting at DS, and increasing in the
direction of storage address 100.

Master microprogram

Upon detection of an operator symbol in Instruction
storage, the Master Microprogram places the address of
that instruction in the Instruction Stack. Control is
transferred to the individual statement microprogram,
which may itself utilize the Data Stack. Upon comple-
tion of the current statement, its address is removed
from the Instruction Stack, and control is returned to
the Master Microprogram.

A DO statement is not regarded as completed until
all instructions in its range have been performed the
specified number of times. Occurrence of a second
DO within the range of the first will increase the Instruc-
tion Stack; thus during the execution of a DO nest of
depth d the Instruction Stack will contain up to d + 1
entries.

To facilitate housekeeping, the last statement in any
DO range contains an EDR (End DO Range) flag in
the operator byte. After execution of each statement,
the Master Microprogram tests for an EDR flag. If it
is not present, the next sequential statement is executed.

DO statement execution

A large part of the housekeeping associated with the
DO statement is performed by the Master Microprogram
as described above. The DO statement microprogram
merely initiates the DO index and examines the Instruc-
tion Stack. If a reference to this DO statement is

26

already in the stack, the stack is decreased to that point.
This is in case a backward jump out of a DO nest had
previously occurred.

Function execution

A space corresponding to the Function Data Storage
area is allocated in the Data Stack. Using the newly-
defined stack limits, each argument is evaluated as an
arithmetic expression and its value copied into the
reserved stack area. When all arguments have been
evaluated, the contents of the reserved stack area are
copies into the Function Data Storage area and the
stack decreased. The Function subprogram is then
entered, using the argument values in Data Storage.
The final function value is entered in Data Storage and
also the Data Stack, in case the same function should
be immediately called again.

Input-output execution

In the basic machine, the input-output format is
decided by the data content. Complete format control
can be provided in an expanded machine, together with
the possibility of attaching punched-card and paper-tape
equipment.

Program testing

Since the machine is to be usable by inexperienced
programmers, a high error rate must be expected during
program input, even with the automatic delimiter print-
out provided. The microprogram will perform all the
functions of a pre-compiler, except that of flow-tracing.

A CORRECT key is provided for those errors detect-
able while the individual statement is being entered. The
internal control registers are then reset to their pre-
statement values, the carriage is shifted and returned, and
the corrected statement can be entered.

Errors detected after statement entry can be corrected
only between numbered statements. The ALTER key is
depressed, followed by the last numbered statement
preceding the erroneous one. All statements preceding
the next correct numbered statement (mp) are then
re-entered in order, including the corrected statement.
The UNTIL key is then depressed, followed by the
number ny.

To correct a program during execution, it is necessary
to maintain both symbol and statement number tables
throughout. This is effected by the DEBUG switch,
which also calls the Trace facility. Whenever a state-
ment is executed, its number (or an X if unnumbered)
is printed. DO statements are represented by an open
bracket, the conclusion of each iteration by a comma,
and the termination of the range by a closing bracket.

Evaluation

To assess the effect of the proposed machine philosophy
on cost and performance, we compare with machine X, a
commercially available machine of similar range.

20z UoJel € U0 1senB Aq L #8681/t2/1/8/e101e/|ufoo/w oo dno-oiwapeoe)/:sdiy Woly papPEO|UMOQ

Direct processing of FORTRAN

We note that, for any set of representative problems,
there is a common set S of basic operations which both
machines will perform: the purely arithmetic storage-to-
storage operation (excluding pseudo-arithmetics like
subscript manipulation and sign change). We now
regard the proposed machine P as comprising: Pl, the
orthodox register-data flow configuration, together with
the microprogram for executing the operations S; P2 the
remaining microprogram, which includes the compiler,
array manipulation, function execution, and general
stack-organization facilities.

Cost

Because the pushdown is microprogrammed, there is
no special circuitry in the machine, which may be
regarded as typical of machines of the same size. The
cost of the proposed philosophy therefore lies wholly
within the P2 microprogram, which is in fact almost
exactly the same size as that of P1. In a machine in
the low-cost scientific field, therefore, the cost is approx-
mately that of doubling the microprogram of a more
conventional machine.

Note that the basic FORTRAN processor needs only
typewriter input-output.

Performance
Machine X is provided with a single-pass FORTRAN
compiler. A set of representative problems was:
(i) hand-coded for machine X,
(it) written in FORTRAN, and
(i) compiled on machine X.
After allowing for difference in basic circuit speeds,

the execution times for the described machine were, for
all problems:

(a) greater than the hand-coded solution times, but

(b) less than the compiled solution times.

The instruction storage required by machine P was at
all times less than that required by either configuration
of machine X. The time taken to write the programs

in FORTRAN was considerably less than to hand-code
them.

Efficiency

For programs which are to be run repeatedly, optimum
coding for inner loops becomes increasingly important.
If the program is to be restricted to FORTRAN, the
P2 microprogram may have to be larger and more
sophisticated. Clearly any compiler feature can be
implemented in microprogram—at a price. Two factors
contribute to the minimization of the P2 microprogram:
the close structural resemblance between source and
object program, and the fact that the compiler itself can
be implemented in a language (chosen by the machine
designer) which is itself independent of source and object
languages.

The machine is intended for the inexperienced pro-
grammer who wishes to express and solve scientific
problems, preponderantly “one-off,” with a minimum of
delay and cost. Time saved in writing and testing
programs will more than compensate for any inefficiency
in inner-loop processing. Direct communication with
the machine will quicken the education process.

Conclusions

There is little doubt as to the usefulness of a machine
which provides the facilities described here. Of the
several design philosophies conceivable, we have studied
the feasibility and practicability of incorporating the
FORTRAN processing facilities in the machine circuitry.
Some measure has been given of the effect of the proposed
philosophy on the cost and performance of the basic
computer unit. It is felt that any depreciation here is
more than offset by the improved efficiency and opera-
tional facilities of the overall system.

Acknowledgements

The design and a complete simulation of the machine
described formed part of an exploratory machine design
study under Mr. C. E. Owen, IBM World Trade Labora-
tories (Great Britain) Ltd. The authors wish to thank the
laboratory management for permission to publish this

paper.

Errata

A simplex method for function minimization by J. Nelder

and R. Mead.

The following alterations are required in the appendix
to the above paper which was published in Vol. 7,
p- 308. The two expressions for the information matrix
should have a factor of 2 attached, and that for the
variance-covariance matrix a factor of 4. The authors
are grateful to Dr. Rodes Trautman for drawing their

attention to this slip.

20z UoJel € U0 1senB Aq L #8681/t2/1/8/e101e/|ufoo/w oo dno-oiwapeoe)/:sdiy Woly papPEO|UMOQ

