An extension of block design methods and an application in the
construction of redundant fault reducing circuits for computers

By R. J. Ord-Smith*

1. Introduction
1.1. Block design theory

In a balanced block design one’s aim is to arrange a number of objects in a number of blocks
according to certain rules. There is a certain class of design in which the blocks can be conceived
as operating upon the objects to produce new objects which, in turn, may enter a further design.
In this case not only does the block operator have to be taken into account, but arrangements
of objects and blocks, normally regarded as indistinct in a block design, can have an important
effect on the properties of the design. These ideas are applied to the design of simple fault
detecting and correcting computer redundancy circuits. Here the criterion of goodness for
design is not just the fault reducing properties obtained by a single pass of information through
the circuit, but the further effect of information encountering a sequence of such circuits.

To detect, and more ambitiously to correct, faults which occur in the generation and trans-
mission of information, it is necessary to generate and transmit extra redundant information.
This may be achieved either by carrying redundant information bits with the information word
(parity bits), or by parallel transmission of the information words in a ‘‘bundle’’ of channels,
and comparison at their destination. The latter method would appear wasteful in the amount
of redundancy which it demands but has been studied by Pierce (Pierce, 1962) and others,
particularly as it is used in biological mechanisms. However, the redundant equipment required
is very simple, and the striking success which can be obtained with simple devices suggests that
their use in computer circuitry would be effective and economic.

This paper uses the block design method for the study of redundancy circuits based on majority
vote takers. A computer has been used in a systematic study of these extended block design
conditions. A very simple redundancy circuit with good fault reducing properties is described.

Though the terms ‘‘error detection’’ and ‘‘error correction’’ are commonly used, we prefer to
use the word ‘‘fault’ in this paper and to reserve ‘‘error’’ for the numerical errors studied in
Numerical Analysis.

Such a design is called symmetric because in it we can
say, in addition to (iii), that

We use the block design notation of Hall (Hall, 1962)
and summarize here those concepts which we shall use.

In a balanced block design we consider v objects
contained in b blocks so that

(1) each block contains k distinct objects,
(ii) each object occurs in r distinct blocks,
(1ii) each pair of objects occurs together in exactly A
blocks.

Then the five parameters v, b, k, r, and A satisfy two
simple relations:

bk = vr (L.1)
rtk — 1) = Aw — 1). (1.2)

There are further conditions imposed upon the para-
meters in order that a design exists. A sufficient set of
conditions is not known, but necessary conditions have
been given by Chowla and Ryser (Chowla and Ryser,
1950).

In a so-called symmetric design b =v. Then from
(1.1) k = r, and (1.2) reduces to
ktk — 1) = Xv — 1). (1.3)

(iv) any pair of blocks share exactly A objects.

The roles of block and object become dual in a sym-
metric design, and interchanging them gives another
block design having the same parameters but not
necessarily isomorphic to the first.

The incidence matrix of a block design is, in general,
a b x v matrix of ones and zeros where the elements
a;; are such that

a;; = 1 if object a; ¢ block B;

otherwise a; =0
and i=1,2...v
j=12...b

1.2. Application

In our application we regard as the objects of a block
design the v lines of an input bundie carrying » simul-
taneous copies of binary information. The blocks are b
majority votetakers each with &k inputs and one output.
In general there are, therefore, b lines in an output
bundle. To examine the passage of information through
a series of such circuits it is convenient to have informa-
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tion bundles containing a constant number of lines. Our
designs will thus be symmetric designs with b = v.

In our redundancy circuits we can regard the incidence
matrix of the design as a maze matrix which describes
the interconnections of the lines of the input bundle to
the inputs of the votetakers. For symmetric designs
the maze matrix is square.

As an example, consider the fault correcting device of
Fig. 1. » = 7 is the number of lines in the input bundle.
b = 7 is the number of lines in the output bundle.
k = 3 describes the number of inputs possessed by each
votetaker. In this design the maze which interconnects
the input lines with the votetakers is such that any two
votetakers only have one common input line, and any
two input lines only go to one votetaker. This condition
is described by the parameter A = 1. With the definition
of Section 1.1 it can be seen further that the maze matrix
(Matrix 1) given in Section 2.2 completely describes
these interconnections.

In examining the design properties for circuits which
will be encountered successively by transmitted informa-
tion, the dual designs contained within a symmetric
design have a special significance, and associated with
this the product matrix [a;;]> becomes important.

1.3. Majority votetaker properties

The simplest majority votetaker is a 3-input gate for
which the transformation of inputs a, b, ¢, each regarded
as a train of binary digits, is given in terms of and (A)
and or () operators as follows:

a@PbdDc=
@ABAIV@AbBASOV@ABAIV@ADAC

where & indicates the votetaker operator.

The property extends simply, in general, to & input
votetakers.

In terms of hardware then, a 3-input votetaker consists
of four 3-input and-gates and one 4-input or-gate. This
is effectively of the order of 16 diodes and 5 resistors.

It is interesting to note, in passing, that, in computer
simulation of votetakers, the or operators can be replaced
by ordinary binary additions. This is only possible
because of the particular form of the contents of the
brackets.

2. Criteria of goodness for a fault reducing redundancy
circuit

We can distinguish two criteria for judging the success
of a fault reducing circuit.

1. We can examine the success of a circuit in reducing
the number of faults on a single pass of information.

2. We can examine the fault reducing properties when
a circuit is presented with successive passes of
information (or when information is presented to a
sequence of similar circuits).

In both cases the fault reducing properties depend on
the transformation properties of the individual vote-
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takers, and on their combined effect which in turn
depends on the design.

2.1. Reduction of faults in a single pass
Single votetaker

If R is the number of faults presented to a single
k-input votetaker then, of course, 0 < R < k.

For such a votetaker when 0 << R < 4(k + 1) the R
faults will be cured instantly; when #(k + 1) < R< k
the R faults will propagate as a fault on the output line.

Combined circuit

For a number of k-input votetakers interconnected to
an input bundle by a maze it is still true that R < #(k 4+ 1)
simultaneous faults will be cured. By imposing a
restriction on the parameter of the design we can further
improve the fault reducing properties of the circuit as
follows. If A < 4(k 4 1) then

(@) Any R simultaneous faults with R= ¥k + 1)
will, at most, propagate as a single fault.

(b) There are ,C, possible R simultaneous faults with
R = k. Of these v possibilities reduce to single
faults.

PROOF:

(@) This follows since the R faults, if presented to a
single votetaker will propagate as a fault, but at
most A (which is <3(k 4 1)) of the faults will
arrive at any other votetaker and will be cured.

Each of the sets of k simultaneous faults which
reduce to a single fault consist of those k faults
presented to a specific votetaker (of which there
are v). Then the faults of a particular set pro-
pagate on that votetaker, but the restriction on A
ensures that there is no propagation on any other.

Q)

Thus acceptable fault reducing properties for a single
pass of information are obtained by adding the condition

A<ik+1)

to the restrictions (1.1), (1.2), (1.3), and the conditions
of Chowla and Ryser for the parameters v, k, A.

We list the possible parameters for designs based on
k-input votetakers for the first few values of k in Table 1.

Table 1

Possible design parameters for simple redundancy
circuits for first few values of k

k v A

21
11
15
73
57

— D ~J Lh L W
N =t L) N =
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votetaker o

line o
line { votetaker {
line 2 voreraker 2
line 3 vorefaker 3

votatoker 4
line 4

voretaker S
line 5

votetaker 6
line &

Fig. 1.—A simple fault reducing redundant circuit

2.2. A specific example

Most of our attention has been centred on the simplest
case of a balanced block design with parameters &£ = 3,
v =7, A= 1. (Such a block design has an interesting
geometrical analogy. Ttis equivalent to a finite projective
plane of order 6.) There are a number of possible
designs with these parameters, two of which possess
automorphisms.

An automorphic design is one having an incidence
matrix which is circulant in form. That is, each row is
equivalent to the row above cyclically right shifted one
place. This symmetry gives the designs interesting
group-theoretical properties. In particular an auto-
morphic design is completely described by one row of
its incidence matrix. Matrix 1, then, is completely
described by the position numbers O, 1, 3 of the non-zero
elements of the first row. Hall calls these numbers
0, 1, 3 (mod 7) the difference set because any possible
position number 0 (1) 6 is expressible as the difference,
modulus 7, of a pair of these. In this case, for example,

0=0—0 2=3-—-1 4=0—-3 6=0-—1
l=1—-0 3=3—-0 5=1-3.
As mentioned later, another automorphic design with

parameters k =3, v =7, A =1 has a difference set
0, 1, 5 (mod 7).

11 01 0 0 07
0110100
0011010
0 00 11 01 Matrix 1
1 00 0110
0100 01 1

L1 01 0 0 O 1]
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The specific redundant circuit design corresponding to
this matrix is shown in Fig. 1.
With parameters k =3, v =7, A= 1:

all single faults are cured immediately,

all double faults (there are ,C, = 21) reduce to
single faults,

7 triple faults reduce to single faults.

The remaining 35 — 7 = 28 triple faults are propagated
as triple faults. The detailed analysis of propagation of
triple faults from input lines to output lines for the above
design is as follows:

012 — 016 123 - 012 345 — 234
013 0 124 1 346 3
o014 014 125 125 *356 235
*015 045 *126 156 456 345
016 056 *134 013
*023 026 135 025
024 146 136 035 See next Section
025 246 145 145 for the
026 6 146 135 significance
034 034 156 5 of the
035 024 234 123 transformations
036 036 235 2 marked*.
045 4 236 236
*046 346 *245 124
056 456 246 136
256 256

2.3. Reduction of faults in successive passes

In a certain class of block designs, of which our fault
reducing circuits are an example, one can regard the
blocks as operating upon the objects they contain to
produce new objects. These in turn may be regarded
as objects in a further block design. In determining the
value of a particular design which is subjected to repeated
inclusions of objects being transformed in this way, it is
important to follow properties of the original objects
through their several transformations. The product of
the incidence matrix with itself helps considerably in
this study. In [a;]* the jth element of the ith column
tells how many times objects in the jth block of the
second design claim descendence from the ith object in
the first design.

In the design of the last Section, 7 triple faults reduced
at once to single faults. It will be seen that 7 more,
marked *, though transforming into further triple
faults, will reduce to single faults after a second encounter
with a similar circuit. All other triple faults, however,
form cycles among themselves and never reduce after
successive transformations. In particular some triple
faults, like 014, simply transform repeatedly into them-
selves. We put the triple fault reducing properties of the
design into a tabular form in Table 2. The other block
design with parameters k = 3, v = 7, A = 1, possessing
an automorphism has a difference set 0, 1, 5 (mod 7)
and similar properties to the above.
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Table 2

Fault reducing transformation table corresponding
to Matrix 1

No. of transformations

1 2
No. of triple faults reduced 7 7

Now the mere ordering of blocks in the design can
have a marked effect on the successful fault reducing
properties. The following maze matrix is obtained from
that of the last section by permutation of rows only:

1 1 01 0 0 07
0 011010
1 000 1 10
1 01 0 0 01 Matrix 2
01 00 01 1
0 00 1101
01 1. 01 0 0]

The triple fault reducing properties are given in Table 3,
and now only 10 triple faults do not reduce.
Consider the properties of [a;;]? for this design.

201220 1 17
2011212
1202112
[a;P=12 2 1 1 2 1 0
0122211
1220112
1 11 1 1 3 14,

It is intuitively clear that the greatest number of
reductions of triple faults will result from the most
uniform distribution of input bundle lines among the
votetakers, subject to the restrictions imposed on the
design parameters already discussed. The presence of
the 3 in the last row of the matrix, in this example, shows
the lack of uniformity and prevents the 7th votetaker of
the second set from reducing a triple fault.

We endeavour to achieve this uniformity by arranging
the scalar product of any row and column of the maze
matrix to be, at most, 2. Now the rows of the matrix
describe the arrangement of objects in blocks, and the
columns likewise for the dual design. We can achieve
uniformity with greatest element 2 by arranging the dual
designs to be the two automorphic designs 0, 1, 3 (mod 7)
and 0, I, 5 (mod 7). A maze matrix with this property is

1 1 01 0 0 07
0 0 01 1 01 Matrix 3
1 000110 in which row zero
1 01 0 0 0 1 and column 3 are
01 00 01 1 the defining
0 011 01 0 difference sets.
01 1 01 0 0]

The fault reducing properties shown in Table 4 show a
remarkable improvement. There is now only one non-
reducing fault 146 == 146.
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Table 3
Fault reducing transformation table corresponding
to Matrix 2
No. of transformations 1 2 3 45
No. of triple faults reduced 7 6 3 3 3

6 7
2 1

Table 4

Fault reducing transformation table corresponding

to Matrix 3

No. of transformations

1 2
No. of triple faults reduced 7 7

3 45
6 6 5

6
3

In the next Section we describe a computer algorithm
for the construction of these transformation tables in a
systematic search through possible block designs, though
the design above proves to be one of the best possible.

We see then that in this extension of block design the
criterion for goodness of design must depend on the
transformations which blocks perform upon the objects,

and the purpose to which the design is put.

In turn

the restrictions upon the design to achieve these ends
must depend on the same considerations. However,
the powers of the incidence matrix are important since
the elements of these matrices describe the effect of
properties associated with the original objects on

successive designs.

3. A triple fault reduction analysis algorithm

As we have seen, seven triple faults reduce at once to
single faults. We can calculate back to the triple fault
which reduces to one of these seven and hence reduces
to a single fault after two passes. This we do as follows:

Suppose x, y, z describes one of the reducing triple
faults. We examine rows x, y and z of the maze matrix
and find that they share in pairs elements in positions
x!, y! and z!. Then x!, y!, z! is the triple fault which
reduces to x, y, z. Continuing in this way we ultimately
find that examination of rows x, y®,  z_ reveals that
all share elements in only one column. This is a row
of the dual design and no earlier triple fault is trans-

formed into x(, y(_ 2

As an example it can be verified that for the block
design defined by Matrix 2 we obtain the following

chains:

023 -013 >0

046 — 235 -1

136 - 045 — 2

015 - 014 — 236 — 135 - 014 — 026 — 3
256 — 234 — 056 — 234 — 156 — 4

345 — 125 — 146 - 456 > 245 — 126 — 346 —> 5

124 — 6.

Hence we start with the triple given in each row and
work back through the chain counting how many triples

transform into each other and finally reduce.

In the
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example the set of numbers thus obtained for rows
0,1,...61s2,2,2,6,5,7, 1. The ith element in the
transformation table is then obtained by evaluating how
many numbers of this set are >i where i =1, 2, . . .

This gives the transformation Table 3.

This algorithm has been built into a systematic genera-
tion of rows of maze matrices satisfying the necessary
conditions and programmed for the Stantec Computing
System at the Institute of Technology at Bradford. In
this way a comprehensive search for the best possible
7th-order maze matrix to be used in association with
3-input votetakers has been made.

Although the automorphic designs with k = 3, A =1
are easy to describe, their incidence matrices being
circulant in form, there are designs for which this simple
structure does not hold. For example, we may have the
design with incidence matrix

[0 0 0 1 1 1 07
011 0100
0 01 0011
1 100010 Matrix 4
01 010 01
1 0001 01
1 01 1 0 0 0.

These designs were included in the search but they
revealed no essential difference with regard to their
successive fault reduction properties from the auto-
morphic designs.

It turns out that there are a number of possible
matrices which will reduce all triple faults by applying
sufficient transformations. The reduction for these
matrices is given in Table 5.

Table S

Fault reducing transformation table for designs in which
all triple faults reduce

No. of transformations 12345678910
No. of triple faultsreduced 776322211 1

No matrices were found which could reduce all faults
in few transformations, and the best matrices might still
be regarded as those having transformation Table 4, in
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