
Function minimization without evaluating derivatives—a review

By R. Fletcher*

The efficiency of methods for minimizing functions without evaluating derivatives is considered,
with particular regard to three methods recently developed. A set of test functions representative
of a wide range of minimization problems is proposed and is used as a basis for comparison.

The problem of minimizing a function/(x) of n variables
x = (xu x2, • • • xn) from a given approximation to the
minimum XQ, has received considerable attention in
recent years. In particular two separate problems can
be distinguished—functions for which both the function
/ and the first derivatives or gradient <>//t>x,- can be
evaluated at any given point x, and functions for which
only/can be evaluated. Although satisfactory methods
have been given by Fletcher and Powell (1963), and by
Fletcher and Reeves (1964) for solving the first of these
problems, the situation with regard to the latter problem
is less clear.

Historically it was found that the simplest concepts,
those of tabulation, random search, or that of improving
each variable in turn, were hopelessly inefficient and
often unreliable. Improved methods were soon devised
such as the Simplex method of Himsworth, Spendley
and Hext (1962), the "pattern search" method of Hooke
and Jeeves (1959), and a method due to Rosenbrock
(1960). Both the latter methods have been widely used,
that of Rosenbrock being probably the most efficient.
However, all these methods rely on an ad hoc rather
than a theoretical approach to the problem. Develop-
ments of gradient methods of minimization mean-
while were showing the value of iterative procedures
based on properties of a quadratic function. In parti-
cular the most efficient methods involved successive
linear minimizations along so-called "conjugate direc-
tions" generated as the minimization proceeded. An
explanation of these terms is given in Fletcher and
Reeves (1964).

Two methods involving these concepts have recently
been introduced, by Smith (1962) and by Powell (1964).
An improvement of Rosenbrock's method to include
linear minimizations has also been developed by Davies,
Swann and Campey (Swann (1964)). A short description
of the basic features of each method is given in the next
Section: reference to the source papers should furnish
any additional details required. Although these methods
represent an advance in the theory of minimization,
little is known of how the methods compare amongst
themselves for efficiency. This paper sets out to make
this comparison, not only for irregular functions designed
to prove difficult to minimize, but also for regular
functions more likely to occur in practice. The efficiency
of the procedures as the number of variables is increased
is also of interest. With these aims in mind, a set of
test functions is proposed by which this comparison is
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made. It is hoped that a scheme of test functions of
this nature will provide a standard by which the effi-
ciency of future methods can be compared. Certainly
conclusions based on results from one or two functions
with only a few variables may be somewhat suspect.

The methods
All the methods are iterative and locate the minimum

by successive linear minimizations from an initial point
x0 along directions p, generated by the procedure and
initially chosen as the co-ordinate directions. That is

where a, is chosen so that/(x, + i) is a minimum along
the direction pt through the point xh (This was not
strictly true of the original version of Smith's procedure,
but is so of an amended procedure developed by the
author and used in this comparison.) The methods
used to accomplish the linear minimization were similar
in each case and are described towards the end of this
Section. A short discussion of the convergence criterion
used in each case to terminate the iteration is also
included here.

(i) Davies, Swann and Campey (D.S.C.)
This method is in essence an application of linear

minimizations to the Rosenbrock method. Ortho-
normal directions pu p2, • • . pn are chosen and n linear
minimizations are made as above. Vectors q\, q2, • • qn
are then chosen so that

q2 =
<*2P2 • • • + <*nPn

• • • + ctnpn

and are orthonormalized by the Schmidt process. These
become the new px . . .pn for the next iteration. In
practice, if the total progress made in each direction in
an iteration is less than the step length used in the linear
minimization, then this step length is reduced. In this
case directions are not replaced, but an extra linear
minimization is made along q\. If no progress is made
along one particular direction, then this direction is not
included in the orthogonalization in order to preserve
linear independence.
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Minimization without derivatives
It is stated by Smith (1962) that when using Rosen-

brock's method on quadratic functions, the directions />,
align themselves in the limit along the axes of the function
(the eigenvalues of the matrix of second derivatives—
a particular case of conjugate directions), and pre-
sumably this can be shown for this method. Hence,
although the method does not have the property of
quadratic convergence, it does have some features in
common.

(ii) Powell's Method
This method depends upon the properties of con-

jugate directions denned by a quadratic function.
Linearly independent directions pu p2, . . .pn are chosen
and a basic iteration (in pseudo-ALGOL) is

y '• = x;
for / := 1 step 1 until n do MIN(i);
for i := 1 step 1 until n — 1 do/», := pi + \\
pn:=y-x;MIN(n)

where MIN(i) is a procedure which advances the current
best approximation x, to the minimum along the
direction />,-. The vector y holds the value of x at the
start of the iteration and is usually a minimum along pn.
At the end of the iteration the direction pn + \ = y — x
is then conjugate to pn. The directions are reordered so
that/>, is replaced by/», + 1, and/>! is rejected. After n
repetitions of this iteration, the minimum of an M-dimen-
sional quadratic function would be located. In practice,
for non-quadratic functions, instability in the form of
linear dependence of the/»; can set in. This has resulted
in a more sophisticated basic iteration in which rejection
of one direction in favour of another is only carried out
if it causes an increase in the determinant of the trans-
formation matrix which relates the vectors pt and any
set of conjugate directions Y),- (both suitably scaled).
The implications of this interesting condition are dis-
cussed by Powell.

(iii) Smith's Method (as modified)
This method also depends upon the properties of

conjugate directions denned by a quadratic function.
Orthonormal directions p\. . .pn are chosen and the
basis of an iteration is

MIN(Y);
for / := 2 step 1 until n do
begins := x; MIN(i);

fory := 1 step 1 until i — 1 do MIN(j);
p, := y - x; MIN(i)

end

This differs from Smith's original method in that
optimum rather than arbitrary displacements are made.
Furthermore, after each iteration, the p, are rearranged
cyclically so that px = pn, and then orthonormalized.
This ensures that individual variables do not get unequal
treatment, and also saves a linear minimization in
subsequent iterations. To locate the minimum of a

quadratic function, the method requires (n — 1) (« + 4)/2
linear minimizations as against the original figure of
«(n + 1)12.

The linear minimization
It is accepted that as none of the methods claims finite

convergence for non-quadratic functions, an acceptable
estimate of the minimum along a line is given by that of
the quadratic passing through three points along the
line at which / has been evaluated. In the method of
Davies, Swann and Campey, and also that of Smith it
is required that these three points should bracket the
minimum. Powell only requires that the predicted step
should be less than some preassigned maximum. All
the methods ensure stable and efficient convergence,
however, and differ essentially in details only. Powell,
however, introduces the valuable idea that the second
derivative of / along a direction can be used whenever
future minimizations along that line are made, so
reducing the number of function evaluations required.
Such a feature can be used in any method where the same
direction is used often. All the methods require a step
length to be chosen initially for the linear minimization.
The results quoted do not involve any optimization of
this factor, a natural selection being made in each case.

The convergence criteria
All methods used different convergence criteria, the

more stringent the criterion, so the more function
evaluations required to satisfy it. Davies, Swann and
Campey have the simplest one in which the procedure
is terminated when the step-length (automatically reduced
during the iteration) becomes less than the accuracy
required. This was sufficient in all cases except Powell's
function of 4 variables, a particularly stringent test.
The natural method of iterating until two estimates
agreed to given accuracy, as used in Smith's method,
also failed in this case. Powell allowed the user to
select, as an alternative to this, another very safe but
lengthy procedure.

Test functions
Seven test functions in all were taken. Three are

already well known and are designed to prove difficult
to minimize. These are

(i) A parabolic valley (Rosenbrock (I960))

*,, = ( - 1 - 2 , 10)
(ii) A helical valley (Fletcher and Powell (1963))

/ = 100[(x3 - 10 6)2 + (r - 1)2] + x32

where xy = r cos 2n8, X2 = r sin 2nd, x0 = (— 1, 0, 0)
functions of two and three variables, respectively, with
steep slopes to a curved valley, and

(iii) A function of 4 variables (Powell (1962))
/ = ( * ! + 10*2)2 + 5(x3 - x4y + (x2 - 2x3Y

+ 1 0 ( * I - J C 4 ) 4

xo = (3,-1,0,1),
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Minimization without derivatives

a function whose matrix of second derivatives becomes
singular at the minimum.

A new test function is introduced representative of
the more regular type of function also obtained in
practice. It has the advantage that the number of
variables can be changed readily. A convenient initial
approximation x0 is also readily available for any n.
This new function is called "Chebyquad" and is con-
sidered here for n = 2, 4, 6 and 8. A description of the
function together with an ALGOL procedure is given
in the Appendix.

The results of minimizing these test functions by each
of the three methods are given in Tables 1-7. After
each iteration the difference between the function and
its value at the minimum is given, together with the
cumulative number of function evaluations and linear
minimizations. In the case of Powell's method the
latter figure (« or n + 1) was not available explicitly,
but was estimated from the number of function evalua-
tions required at each iteration.

Discussion
In order to eliminate the effect of differences in the

algorithms for linear minimization, methods have been
compared primarily in terms of this factor rather than
the number- of function evaluations. Graphs of
logio(/~/m/«) against the number of linear minimiza-
tions have been prepared for each test function, and
together with the tables will provide the basis of the
discussion, (see Figs. 1-7.)

The situation with regard to Smith's method is fairly
clear. When the number of variables n is small (2, 3, 4),
then the method is acceptable, although noticeably
inferior to the other methods. As n increases, however,
the method rapidly becomes unworkable. This situation
arises from the fact that at each iteration, many of the
linear minimizations are made repeatedly in limited sub-
spaces, permitting of only restricted progress to the
minimum. The complete space is thus only covered
after n{n + l)/2 linear minimizations ((« — l)(n + 4)/2
as amended) whereas it would seem vital that it is
covered at every n minimizations. The cause of ineffi-
ciency is the same as that in Powell's (1962) early gradient
method for minimization. Some improvement could
be made if the second derivative were used to reduce the
number of function evaluations required in the linear
minimization. This, however, would not remove the
basic cause of inefficiency.

On the basis of function evaluations the most efficient
method is certainly that of Powell. This arises from the
repeated use of the same directions, permitting the
second derivative to be used in the interpolation. Com-
paring by linear minimizations, the most noticeable
feature is the rapid convergence near the minimum. In
fact, for functions of a few variables the method com-
pares advantageously with both others (except on
Powell's function of 4 variables, on account of the

singular behaviour at the minimum). However, as the
number of variables increases, the comparison with the
D.S.C. method becomes less favourable. Powell him-
self observes that as the number of variables is increased,
there is a tendency for new directions to be chosen less
often, and it seems likely that these factors are related.
The criterion which determines when a new direction is
to be chosen is such that the directions retained never
proceed towards linear dependence (as measured by the
appropriate determinant). It could be that this criterion
is too stringent, and that an alternative should be found.
Possibly some lower limit on this determinant could be
fixed; new directions to be chosen unless the limit be
violated. It would certainly seem that if this point
can be solved, and convergence for large numbers of
variables can be improved, then Powell's method will
be the most powerful for the general solution of the
problem.

The method of Davies, Swann and Campey is certainly
a simple and effective method of minimization, per-
mitting a convenient choice of convergence criterion,
and showing up well with larger numbers of variables.
On the other hand, as directions are only used once, the
second derivative cannot be used directly to save
function evaluations. It is also difficult to suggest any
way in which convergence can be appreciably improved.
It would seem that the extent to which it is successful
as a general method will depend upon what improve-
ments, if any, can be made to Powell's method.

The desirability or not of quadratic convergence has
already caused many arguments. Certainly the advantage
of the D.S.C. method is most marked when the minimum
cannot be represented adequately by a quadratic. How-
ever, such situations rarely occur in practice, the only
case to my knowledge being at a non-zero minimum,
when attempting to solve non-linear equations (see the
example in Freudenstein and Roth (1963)). As against
this the rate of convergence of Powell's method near
the minimum is striking, this being a feature of methods
with quadratic convergence. In the region remote from
the minimum, complex situations occur, in particular
the presence of narrow curving valleys. Methods with
quadratic convergence are successful in generating good
directions, inasmuch as they take into account the local
curvature of the function in these regions. However,
the Rosenbrock—D.S.C. approach of attempting to
align the directions of search along the axes of the valley
is equally valid, and no doubt there are other ways in
which this problem can be tackled.

To construct a program in which different methods
are used in different regions would be extremely clumsy
and would introduce difficulties in the choice of change-
over point. In choosing a "best buy" therefore, we
want a reliable method which performs efficiently in as
many situations as possible. The real question then,
lies in the nature of any advantage which the D.S.C.
method may have when the number of variables is large.
Is this due to disadvantages associated with the general
properties of conjugate gradients, or rather to the parti-
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cular over-stringent criterion used by Powell for
accepting new directions? Experience with gradient
methods has shown that whilst there are many ways of
generating conjugate directions of widely differing effi-
ciency, the best of these has proved to be the best in
general. I am inclined to think that this will be the case
here.

Minimization without derivatives
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Appendix
The new function, Chebyquad, arises as follows.

With Chebyshev (equal weights) M-point quadrature,

the integral | F{x)dx is represented by the sumJo
1 "
«,= i

The abcissae x = (xu x2,. . . xn) in the range 0 < x,- < 1
can be determined from the condition that if F is a poly-
nomial of degree n or less then the above representation
is exact. In particular, for arbitrary *, we can define
the residual A, as the difference between the integral
and the sum when F is a polynomial of degree i.
Choosing the shifted Chebyshev polynomial T( we
define

Then the function

has the property that if x is the vector of abcissae, then
/ = 0 , otherwise / > 0. Hence we can determine the
abcissae for any n, by estimating x and minimizing/^)
from this point. This is the basis of the ALGOL pro-
cedure CHEBYQUAD given below. Convenient initial
estimates of the x, are at equal intervals in the range,
that is x,- = iftn + 1). In reality the quadrature formula
is only accurate (in the sense that a zero minimum of/
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procedure CHEBYQUAD ( / x);
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Table 1

A parabolic valley

ITN.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

D.

F

2-4,0.
3-9,oo
2-8,oo

2-3,oo
l-8,o«

1-4,0°
l-l,0o

5-l,0-
5-l,o-
2-O,o-
1-3,0-
8-8,0-
5-3,0-

3 0,0-
1 -4,o-
5-6,o—
1-5,0-

l-9,o-
3-3,0-6

3-7,0-
7-0,o-o
1-5,0—2

s.c.

FNS.

1
12
21
28
36
43
50
58
64
80
91
101
112
121
130
139
148
156
163
169
178
187

L.M.

0
3
5
7
9
11
13
15
17
20
22
24
26
28
30
32
34
36
38
40
43
46

POWELL

F

2-4,0-
4O l o o
3-3,oo
2-6,oo

1-9,0°
1-1,0°
5-6,0—
3-4,0-

l-2,o-
7-4,o-
5-4,0-
8-2,0-
4-410-9

6-9,0-2

1-3,0—6

FNS.

1
13
25
35
46
58
73
86
98
113
122
134
145
153
158

L.M.

0
3
6
9
12
15
18
21
24
27
29
32
35
37
39

SMITH

F

2-4,0'
3-8,oo
3-3loo

2-2,oo
1-2,00

9-6,0-
6-0,0-

5-4,0-

4-l,o-'
2-2,o-
4-l,o-=
4-0,0-

1-2,0-
1 -4,o-
5-4,0-
3-1,0-
4-0l0-8

4-6,0-9

1-4,0—"
3-6,0-i6

FNS.

1
14
28
44
55
66
77
98
110
119
130
148
164
171
184
195
206
215
223
234

L.M.

0
4
7
10
13
16
19
22
25
28
31
34
37
40
43
46
49
52
55
58

Table 2

A helical valley

ITN.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

D.S.C.

F

2-5,03
l-4,02

l-2,0'

l-lio'
l-lio1

9-7,oo
7-6,0o
6-3,oo
2-4,oo

l-9,0°
l-4,o°
6-9,0-
4-1,0-
9-3,0-
5 6,0—

l-2,o-
10,0-4

9-4,o-
2-5,0—
2-6,o—o
2-3,o-2
2-1,0—4

FNS.

1
20
33
42
55
69
84
97
111
125
138
152
165
178
188
199
209
218
230
242
254
266

L.M.

0
4
7
10
14
17
20
23
26
29
32
35
38
41
44
47
50
53
57
61
65
69

POWELL

F

2-5,03

l-4,o-

l-l,o'
l-l,o'
6-6,o°
5-2,0°
2-9,0o
l-5,oo

6-9,0-
l-5,o-
8-6,o—
3-3,0-

1-O,o-
l-4,o-
l-8,o-io

2-1,0—2

FNS.

1
29
41
51
63
74
86
98
109
121
133
146
155
166
173
180

L.M.

0
4
8
12
16
20
24
28
32
36
40
44
47
50
53
56

SMITH

F

2-5,03

1-4,0'
6-9,oo
4-6,oo
l-8,0o

l-4,o°
6-7,o—
7-O,o-
6-5,0—
1-5,0-
2-6,0—
3-2,0-6

1-9,0-
l-3,o-9
1-5,0—2

FNS.

1
43
65
92
118
145
176
199
227
250
280
303
324
346
365

L.M.

0
8
15
22
29
36
43
50
57
64
71
78
87
94
101
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Fig. 1.—A parabolic valley
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Table 3

Powell's function of 4 variables

ITN.

0
l
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

D.S.C.

F

2-2,02

2-8,oo

6-3,o—

2-3,o-
1 O,o-
3-9,0-
3-6,o-2
6-2,0—

1' 1 io-4

6 1,0-5

1-2,0-

1-3,0-8

l-6,o—i
8-6,0—2
3-9,0-2

5-O,o-4
2-1,0-H

FNS.

1
27
45
61
75
88
100
124
138
152
165
180
192
207
223
238
253

L.M.

0
5
9
13
17
21
25
30
34
38
42
46
50
55
60
64
69

POWELL

F

2-2,02
4-7,oo
3-8,oo

2-9,o«
8-9,0-
7-4,o-2
4-3,0-3

9-0,0-
2-9,0-4

8-4,0-5

8-2,o-5

5-O,o-5
2-8,o-«
2-9,0-
4-3,0-8

2 0,0-8

5-3,o-»

FNS.

1
26
41
57
72
86
102
117
126
138
148
161
177
195
208
219
235

L.M.

0
5
10
15
20
25
30
35
39
44
49
54
59
64
69
74
79

SMITH

F

2-2,02

41,0—
1-4,0-2
5-010-4

8-4,o-5
4-7,0-6

1-7,0-
8-4,o-8
2-8,0-8

2-4,o—o
4-3,0—'
3-7,0—1
3-710—i

FNS.

1
51
101
144
194
230
278
312
358
406
448
497
533

L.M.

0
13
25
37
49
61
73
85
97
109
121
133
145

Tables for Chebyquad

Table 4—Chebyquad n = 2

0
1
2
3
4
5
6
7

D

F

2-0,0-
l-3,0-3

l-3,0-

1 5 , 0 -
l-5,o-
1 - 4 I 0 —
l-6,o—5

1 "6io—9

.s.c.

FNS.

1
13
19
29
32
41
50
59

L.M.

0
3
5
8
9
12
15
18

POWELL

F

2-0,0-

1-3,0-2

l-l.o-'
1-6,0—0

5-8,0-2
8-6,o—

FNS.

1
12
21
30
36
41

L.M.

0
3
6
9
11
13

F

2-0 1 0-
9-7,o-6
l-6,o-6
l-l,0-9

l-5,o-

SMITH

FNS.

1
17
30
43

3 51

L.M.

0
4
7
10
13

Table 5—Chebyquad n = 4

ITN.

0
l
2
3
4
5
6
7
8
9
10

D.S.C.

F

7-lio-2

1-7,0-
9 0,0-
6-6,0—

1-9,0-

3-lio-5

7-2,o-6
l-3,0-6

1-2,0-s
2-0,0—
2-2,o—4

FNS.

1
17
29
48
62
85
100
115
127
142
157

L.M.

0
5
9
14
18
23
27
31
35
40
45

7
1
1
1
8
7
2
4

POWELL

F

"1,0-2

• 1 io-2

•7,0—
•8,o-=
• 9 , 0 -

•9,0-8
•6,0—2

•lio—

FNS.

1
22
34
47
61
72
82
91

L.M.

0
5
10
15
20
24
28
32

7-
2-
8-
1-
1-

SMITH

F

llO-2

810-3

2,0-*

110—"
8,0—4

FNS.

1
54
95
130
164

L.M.

0
13
25
37
49
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Minimization without derivatives

Table 6—Chebyquad n = 6

ITN.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

D.S.C.

F

4-6,o-2

2-6,o-2
l-910-2

1-0,0-2
4-3,o-3

6-5,0-"

3-5,o-

2-4,o-
1-5,0-

3-8,o-5

3-O,o—

6-3,o-'

2-6,o-'

9-4,0-8

2-8,o-8

8-2,0-9

5-0,0-9

3-6,o-9

2-5,o-9

1-8,0-9
l-l,0-9

4-4,o—o

1-9,0-0

3-5,o-i

3-9,0-2

FNS.

1
22
52
78
104
127
145
175
200
226
251
270
288
312
331
349
376
397
418
437
457
476
495
514
532

L.M.

0
7
14
20
26
32
38
45
51
57
63
69
75
82
88
94
101
107
113
119
125
131
137
143
149

POWELL

F

4-610-2

l-9,o-2

9-4,o-3

5 9,0-3

2-4,o-3

l-2,o-3

6 • 1 ,o—

5-3,o-

2-3,0-

1-7,0-
8 • 1,0-5

8-4,o-

6-6,o-8

7-7,o-'

1-3,0-9

l-9,o-i.

6-8,o—i"

FNS.

1
27
47
66
88
108
126
142
160
179
196
215
233
247
261
275
288

L.M.

0
7
14
21
28
35
42
48
55
62
68
75
82
88
94
100
106

4
1
7
6
5
1
6
2

SMITH

F

•6io-2

•7,o-2

"3,0-

•5,0-

•9,o-

•210-*

•5,o-'
'7,0—1

FNS.

1
96
192
290
389
431
589
670

L.M.

0
26
51
76
101
126
151
176

- / •
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Fig. 5.—Chebyquad n = 4 Fig. 6.—Chebyquad n = 6
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Minimization without derivatives

Table 7—Chebyquad n = 8

ITN.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

F

3-5,0-2
2-2,0—2

1 "4io—2

9-6,o-3
8-3,o-3

8-2,o-3

8-0)0-3

6-8,o-3

3-4,o-3

2-4,o-3

5-7]o-4
1-7,0-4

3-4,o-5

1-0,0-5

1 "7io—6

7-6,o-7

l'2lo-7
51O~8

1 io—s

5,0-1°

1 io-10

D.S.C.

FNS.

1
28
60
90
117
141
178
223
266
306
348
386
424
454
480
504
544
579
607
634
659
684
708
739

L.M.

0
9
18
26
34
42
51
59
67
75
83
91
99
107
115
123
132
140
148
156
164
172
180
189

POWELL

F

3-5,o-2
l-2l0-2

8-9,o-3
8-O,o-3

6-6,o-3

2-7,o-3
l-9,0-3

1-7,0-3
l-710-3

l-6,o-3
1-4,0-3

6-4,o-4

4-l,0-4

2-9,0-4

4-2|o-5

1' 6,0-'

1 • 11 o~5

6-7,0-6

5-8,0-0

5-4,o-6

4-1,0-0

5 • 6,0-7

1 -6,0-10

5-7,o-i3

FNS.

1
29
52
73
91
122
150
172
194
214
235
263
292
317
339
360
385
409
428
447
465
484
502
520
537

L.M.

0
9
17
25
33
42
51
59
67
75
83
92
101
110
118
126
135
144
152
160
168
176
184
192
200

3-
7-
7-
6-
2-
1-
1-
2-
6-
7-
3-

F

510_2

9,o-'
O,o-'
4,o-'

2,o-'
6,0-4

610—o

2,0—s

SMITH

FNS.

1
154
319
488
669
840
1002
1177
1327
1482
1652

L.M.

0
43
85
127
169
211
253
295
337
379
421

exceeded time
limit

-2-

-3-

-4-

-5-

-6-

-7-

-8-

-9-

-10-
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-11-
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Fig. 7.—Chebyquad n = 8
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