
Obtaining solutions of the Navier-Stokes equation by relaxation
processes

By John A. T. Bye*

The results of a series of relaxations of the Navier-Stokes equation by a special line iteration
process are presented. The convergence properties are similar to those of the Biharmonic equation
at low Reynolds Numbers, but at higher Reynolds Numbers the non-linearity of the equation
severely reduces the maximum convergence rate.

1. Introduction
In recent years there has been much theoretical discussion
in the literature of relaxation techniques for solving the
Biharmonic equation (Frankel, 1950; Windsor, 1957;
Conte and Dames, 1958; Parter, 1959). In this note we
construct non-linear finite-difference approximations to
the Navier-Stokes equation with specified boundary
conditions over a rectangle, and we examine the con-
vergence properties of a special line iterative procedure
which was applied for solving these equations. The
computation was performed on the Ferranti Mercury
computer at London University in 1960-61.

A series of solutions at different Reynolds Numbers
was calculated, for finite-difference networks of p X 6
internal nodes (where p was large, greater than 20).
Satisfactory convergence rates were observed at low
Reynolds Numbers, but at higher Reynolds Numbers,
due to the increasing non-linearity of the equations, it
was found that the maximum possible convergence rate
rapidly decreased.
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Fig. 1.

2. The problem
The purpose of the investigation was to calculate the

circulations induced by a steady uniform stress acting on
the surface of a liquid in a closed basin of vertical sides
and uniform depth (Bye, 1962). The problem consisted
of solving the two-dimensional Navier-Stokes equation,
for circulation in a vertical plane parallel to the surface
stress OF,), at a series of values of Reynolds Numbers
(Re) between 0 and 400.

Formulated mathematically, the problem is a solution
of the non-linear partial differential equation:

in a rectangular region, X-> 0 to A, Z -> 0 to 1 (A > 1),
with the boundary conditions

= 0,-^. = 0, X=0, A 0 < Z < 1

A ' r\ ^7 i

1

Q 0 <X <A

^ = 0 , - ^ 2 = 1,Z = O, 0 < X < ^

where >̂ is a non-dimensional stream-function and

(2)

4pv2

(D is the depth of the basin, p is the density, and v is the
dynamic viscosity of the liquid.)

This paper describes the method used to obtain most
of the solutions between Reynolds Numbers 0-200.

3. The finite-difference equations
Firstly the equation was approximated by a set of

second-order finite-difference equations which were
solved for each interior point (J, k) of the rectangular
network shown in Fig. 1.
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Navier-Stokes equation

The finite-difference stencil at network points, except
for those adjacent to the boundary, is

1

1
2 - 8 2

1 - 8 20 - 8 1
2 - 8 2

1

- 1 © 1 - 1 4 - 1
-1 4 0 - 4 1 + 0 0 ©

- l Q l 1 - 4 1
1

+ O(/i2) = 0.

, k)

(3)

In the second term of the stencil, the coefficients in
circles represent two-term difference operators which
multiply the remaining coefficients.

In the columns j = 1 and p — 1, and the rows k = 1
and q — 1, this stencil involves external nodes. These
nodes were eliminated before iteration commenced by
combining with the finite-difference boundary conditions.
For example, for points in the top row k = 1, except the
points (1, 1) and (p — 1, 1) the boundary conditions
modify the stencil to

1 - 8
2

19 - 8 1
- 8 2

1

-1 4 0 - 4

-i 0 i
• O

1 - 4 1
1

<KJ,

= 0. (4)

Here, the nodes in the top row of the stencil (3) have

been eliminated by the boundary condition ^-=-2 = 1,

and nodes in the second row set identically zero by the
boundary condition, <f> = 0.

In the solutions to be described, the truncation term
O(/J2) was ignored. A trial solution showed that little
advantage was gained, but much extra labour was
involved, in applying a second-order difference cor-
rection.

4. The numerical method of solution
The vertical line (or column) iteration method used to

find the solution was extremely simple. Before iteration
was started a single line biharmonic iteration matrix A
of dimensions (q — 1) X (q — 1) and defined by the
matrix equation (5) was formed and inverted.

A =

19
- 8

1

- 8
20

- 8

1
- 8
20

1
- 8 (5)

1 - 8 20 - 8 1
1 - 8 20 - 8

1 - 8 21

The network was then iterated by columns. A com-
plete cycle of the iterative process consisted of scanning
over all columns in turn in the order

j= 1,2, 2,p- 1, p - 2, . . . , 2 , 1 .

In each iteration <j> was relaxed simultaneously at all
nodes within the column, and the new ordinates
<f>(-2n+i+1\j, k) were computed from the matrix equation
(6).

<k(2n+i\j, 1)
>,2)

tuA~i

2)

(6)

Here the residuals R<f,(j, k), are defined as h* X the
value of the L.H.S. of the stencil equation (appropriately
modified in the cases j = 1 and p — 1), and the vector
of residuals was computed from the latest available
estimates of <f>, immediately before relaxing the current
column, oi is the relaxation parameter, A~x is the
inverse of the iteration matrix, n is the number of the
current double scan, and / = 0 for scanning by columns
from j = 1 to p — 1 and i = 1 for scanning by columns
from j = p — 1 to 1.

The solution started from arbitrary initial values
<j>(°\j, k).

After each scanning of the network the relaxation
parameter (oi), the sum of the squares of the residuals,

1 p-\ 9-1

GM= S S S Rf2n+iKj,k)
(=0 7 = 1 k = \

and the quantity £(n) defined as

1/4

were recorded. It is readily seen that /?(n) is a convenient
measure of the convergence rate of the iterative procedure.

The relaxation parameter (w) could be adjusted
between scannings of the network by setting a hand-
switch on the computer, and the convergence was
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Navier-Stokes equation

studied by plotting j3(n) against co. Normally co was
gradually increased until its optimum value was found.

5. The convergence of the solution
(a) The optimum relaxation parameter

Two values of the parameter co are particularly signi-
ficant: the maximum parameter, above which the
iterative process became unstable, and the optimum
parameter cox(Re), i.e. the value of co at which the
iterative procedure converges the most rapidly, for a
fixed value of Re. For Reynolds Numbers > 40, the
optimum was only just less than the maximum para-
meter; the transition from convergence to severe insta-
bility being very sharp and occurring within a change in
co of less than 0-02. Both parameters decreased as the
Reynolds Number increased, so that for Reynolds
Numbers > 80 the optimum co was less than 1. The
observed values are recorded in Table 1.

In practice, because of the small difference between
the optimum and the maximum parameter, the solutions
were obtained usually only with parameters up to slightly
below the optimum.

(b) The convergence rate
Below the optimum parameter, the convergence rate

(/2(n)) depended on the state of the convergence. In the
early part of the convergence, high rates were observed
at all parameters. If, however, the relaxation parameter
was held constant for sufficient scannings of the network,
the convergence rate at that parameter tended to a
limiting value (0).

From estimates of ^ at several relaxation parameters,
a graph of jg against co for each solution was drawn.
A noteworthy feature of the graphs was that there was
no observable variation in the convergence rate (0) with
Reynolds Number.

6. Comparison with theoretical results
Parter (1959) obtained an estimate of the effective

decay factor (AL) for the two-line Liebmann method for

the biharmonic equation with <f> and —̂ specified

everywhere on the boundaries.

for which, applying the theoretical definition of the
convergence rate,

p = — In A

the unextrapolated convergence rate (pL) is:

PL < vKp-1 + q-2)1- (8)

Since Parter's equations are consistently ordered
within Block-property A, the eigenvalues XE of the two-

Table 1

The maximum and optimum relaxation parameters and
the optimum convergence rate of the solutions

REYNOLDS
NUMBER

0
20
40
60

100
150
200

MAXIMUM
RELAXATION
PARAMETER

>l-62
>l-62

1-45
1-17
0-94

>0-4
0-50

OPTIMUM
RELAXATION
PARAMETER

>l-62
>l-62

1-43
1 1 6
0-93

>0-4
0-50

OPTIMUM
CONVERGENCE

RATE

>0-174
>0-174

0-115
0 065
0 038

> 0 0 1
0017

p

56
56
56

109
109
24
24

line S.O.R. method for his problem obey Young's
Formula

(9)

(cf. Parter, 1959).
Taking logarithms in equation (9), and substituting

pL = — In \L where pL is the unextrapolated con-
vergence rate, and p = — In XB where p is the S.O.R.
convergence rate, we obtain

-2p

therefore P - 1 - coll

Pi = PL + O(p2).where

Therefore if pL —>• 0 we have,

1 co/2
(10)

unless co varies so that 1 — co/2 = O(p) in which case it
follows from (10) that pL = O(p2).

Now in all cases we find that the convergence rate (0)
of our solutions for co < co* (Re) could be fitted to the
empirical formula:

= (0021 ± (ID

0 < co < cox (Re).

This equation is of the same form as equation (10)
despite the fact that our finite-difference equations (even
in the linearized form at zero Reynolds Number) do not
possess Block-property A.
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Navier-Stokes equation

Further, if we obtain the unextrapolated convergence
rate (fiL), by substituting 10 = 1 in equation (11),

fiL = 0042 + 0-002

and compare it with pL (equation (8)), which for our
network parameters, p = 24 — 109 and q = 6, varies
between,

pL < 0085 and pL < 0076,

it is clear that the convergence rate of our special line
iterative method is about half Parter's estimated rate
for the two-line Liebmann method for the Biharmonic
equation under his boundary conditions.

Equation (11), however, unlike Young's Formula
cannot be used to predict the optimum relaxation para-
meter. It is found that the optimum and maximum
relaxation parameters of our convergences are deter-
mined by the non-linearity of the equations. In certain
regions of the network, as the Reynolds Number
increases, the coefficients of the side nodes of the stencil
equation (3) become progressively greater than the
central coefficient. This causes instability of the single
line process at lower and lower relaxation parameters
(Bye, 1962).

7. Conclusion
The convergence rate (jg) of this set of solutions of

the Navier-Stokes equation by a special line iteration

process varied with w in approximately the same manner
as the convergence rate of S.O.R. for consistently ordered
matrices, provided that R < 2 — u>. The maximum
relaxation parameter a>x (Re), however, decreased steadily
as the Reynolds Number increased. By Reynolds
Number 200 the efficiency of the single line process had
been seriously impaired.

It appears that if solutions are to be obtained effec-
tively at higher Reynolds Numbers a more elaborate
iteration scheme is required. This should not depend
on the constant element iteration matrix (5), but take
into account the local changes which occur in the
coefficients of the nodes of the complete finite-difference
stencil (3) as the convergence proceeds.

The development of such methods for the Navier-
Stokes and other equations, although almost certainly
demanding on computer time, may well make possible
the numerical solution of important non-linear problems.
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"Irascible Genius"

Dear Sir,
Mr. Ord-Smith, in briefly reviewing Miss Moseley's book
upon Charles Babbage, might have called attention to two
astonishing misstatements regarding that mathematical
genius the late Dr. A. M. Turing, F.R.S. On page 258
she says:

Had he [Babbage] come back within seventy years, in
1936, he would have found another Englishman of genius,
Alan Turing, wresting the touch from him and passing it
on to others.

The reference is presumably to a paper entitled "On Comput-
able Numbers" which Dr. Turing submitted to the London
Mathematical Society on 28 May 1936, in which he discussed

in terms of pure mathematics the computational limitations
of such a machine as an electronic binary scale development
of Babbage's analytical engine which had been discussed at
the Institute of Actuaries four months earlier, namely on
27 January 1936.

Miss Moseley is not even consistent; in her Prologue,
on page 17, she quotes the view that "Charles Babbage's
ideas had begun to be properly appreciated only after the
Second World War;" on the same page she refers to Turing
as "the originator of the pilot ACE." Team work on the
Pilot ACE commenced, to be pedantically precise, at 10.30 a.m.
on Friday 15 January 1943. Turing did not join the team
until the autumn of 1945.

Yours truly,
WILLIAM PHILLIPS.

Lamb Building,
Temple, London, E.C.4.
4 February 1965.
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