
The solution of linear differential equations in Chebyshev series

By R. E. Scraton*

Any linear differential equation can be transformed into an infinite set of simultaneous equations
in the Chebyshev coefficients of its solution. In suitable cases these equations can be solved by
iterative procedures, which are particularly suitable for automatic computation. Similar iterative
methods can also be used for certain eigenvalue problems.

The numerical solution of the linear differential equation

yM + "l! Pi(x)yU) = F(X) (l)

in the form of a Chebyshev series

y = a2T2(x) + a3T3(x)

= £ ' arTr{x)
r=0

has been the subject of a number of papers in recent
years. The so-called 'direct' method of determining the
coefficients ar was first proposed by Clenshaw (1957),
and has been subsequently discussed by Fox (1962).
This method is only practicable when the functions P,-(JC)
are polynomials of small degree. A later paper by
Clenshaw and Norton (1963) gave an iterative procedure
based on Picard's method and the principle of colloca-
tion; this is applicable to a wider class of differential
equations, but is usually considerably more lengthy than
the direct method.

The purpose of the present paper is to consider the
extension of Clenshaw's original method to the case
where the Pi(x) are general functions with known
Chebyshev expansions. It will be assumed throughout
that the independent variable has been suitably trans-
formed so that the solution is required in the range
— 1 < x < 1. It should be noted that in writing the
differential equation in the form (1) and assuming that
the Pi(x) have Chebyshev expansions, it has been
implicitly assumed that the differential equation has no
singularities in the range — 1 < JC < 1.

First-order equations
The first-order linear equation may be put in the form

y + P{x)y = F{x)

where

and

= S' p,.TXx)
r=0

= £ ' frTr{x).
0

It will be assumed for the sake of definiteness that the
initial condition is specified at x = 1, i.e. y(l) = -q.

The modifications to the equations below when the initial
condition is specified at some other point should be
reasonably obvious.

If in the usual way the Chebyshev coefficients of y are
denoted by an and those of y' by a'r, it is easily seen that

2a'r + £ ' (j>f+I +p\r-s\)as = 2/,, r > 0.
s=0

The dr term can be eliminated in the customary manner
by making use of the relation

a,_, — = 2rar

to yield

4rar + 2^ 0rr+, + » , - > , = 2<Ar, r > 1, (2)

where -nr = />,._, — pr+u TT0 = 0, ir_r = — -nr

and <t>r=f,-\-fr+\-

The initial condition is given by
00

,?o' °s = ^
and if this is used to eliminate a0 equation (2) becomes

2 rs)as = 2{<f>r — 7)TTr),

r>\. (3)

Now (3) is an infinite set of equations in the infinite
set of unknowns au a2, a2, . . . It is always possible to
get approximate values for these unknowns by assuming
that as is negligible for s > n, and solving the first n of
the set of equations (3) for au a2, . . . an. In fact Fox
(1962) derived sets of equations equivalent to (3) for a
few simple differential equations, and obtained solutions
by this method. If, however, P(x) is not too large—if,
say, P(x) is of order 1—the terms nr+s, -nr, -nr^s in (3)
will be small compared with the term 4r. In other
words, the set of equations will have a "strong diagonal."
This suggests that an iterative procedure of the Gauss-
Seidel type might be appropriate. Such a process would
be defined as follows:

(4r + n2r - 2T7>W
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Chebyshev series

Table 1

Steps in the iterative solution of y' — %e*y = 0, y{\) = 1

k

1
2
3
4
5
6

a\

0-3
0-21
0-248
0-2477
0-24828
0-24824

a*

0 1
0 0 9
0 083
00818
008194
008194

0 0 2
0 023
0 0220
0-02203
0-02204

0 006
0-0055
0-00540

00013
000125

0-0003
0-00028 0-00006

as

0-00001

where ym = S'

2 (
s=r+l

(4)

where d® denotes the /cth approximation to ar. The
initial approximations a^ would normally be taken as
zero. It is not necessary to decide beforehand how many
of the coefficients ar will be significant; at each stage in
the iteration the ars are calculated successively, and those
which are negligible to the number of decimal places
being retained are ignored. The whole process reduces
to the repetitive use of equation (4), and as such it is
very simple to program for automatic computation.

As an example, Table 1 shows the steps in the solution
of the differential equation

y> - $e*y

The final solution is

= 0, (5)

y = 0-64078 + 0-24824 Ty{x) +0-08194 T2(x)
+ 0-02204 T3(x) + 0-00540 T4(x)
+ 0-00125 Ts(x) + 0-00028 T6(x)
+ 0-00006 r7(jc) + 0-00001 T8(x) + ...

(6)

The correct solution of (5) is y = exp [^(e* — e)], so
that X0) = 0-563966 and y(- 1) = 0-456819; the
corresponding values of y given by the series (6) are
0-56397 and 0-45682 respectively.

Simultaneous differential equations

For the set of simultaneous differential equations

y'm + S Pmn(x)yn = Fm(x), m = 1, 2, 3, . . . N,

ym (0 = Vm,
the equivalent of the set of equations (3) is

(7)

and 77̂ ", (f>™ are related to Pmn{x), Fm(x) in the same
way that -nr, <f>r are related to P(x), F(x). This equation
will, of course, need some changes if any of the initial
conditions are specified at points other than x = 1, but
the basic approach remains the same. The solution of
the set of equations (7) may be obtained by an iterative
procedure, as before.

Furthermore, since a differential equation of any
order can be rewritten as a set of first-order simultaneous
differential equations, the general linear equation (1)
can be dealt with by a simple extension of the method
described above for first-order equations.

The second-order equation y" + P(x)y = F(x)

Equations of the form

y" + P(x) y = F(x)

occur sufficiently often to merit special consideration.
With the same notation as before

H' + S ' (pr+s +/v_,,)fl , = 2/,, r > 0,
s = 0

and hence
00

Ara'r + 2 ' (*>+, + * - , _ , K = 2<f>r, r>\.

After elimination of a'r, this reduces to
oo r j

Srar + 2 ' : K + J -

The initial or boundary conditions attached to a
particular problem give two more equations in the
coefficients ar; these may be used to eliminate a0 and a,
from (8), so as to leave a set of equations for the unknowns
a2, a3, a4,. . . For example, the initial-value problem
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Chebyshev series

Table 2

Steps in the iterative solution of / ' — (x6 + 3x2)y = 0, y(l) = X " V) =

k

1
2
3

0114
0-108870
0-108828

a4

0 030
0-030180
0-030184

0 002
0001758
0001757

as

0-000263

OlO

0-000014

an

0-000002

in which XI) = V> .V'O) = V'has the additional equations
oo

00

and 2 s2flj = "<)'•
s=l

Equation (8) therefore becomes

-l V ~

2(s 2 - r_ s + , ] rs \a

1
r - V

1 r

£ r_ 1 — 2(77 — Tj')"-,- 1 — V("V

(9)

On the other hand, for the boundary-value problem in
which y(l) = 171 and y{— 1) = T^_,, the additional
equations are

a0 + 2a2 2a6

and a 1 + a3 + a5 + a7 -+- . . . = v

where /x = 77, + ry_, and v = ^(77, — TI_ , ) . In this
case equation (8) can be put in the form

(Ur_Us

(10)

where t/r>, = - ( " " r + J — 2?rr + TT-r.̂ ) if s is even

and Ur,s = -(«v+ s — 77r+, — 77r_, + 7Tr_,) if j is odd.

A similar procedure may be adopted in the more general

case where the boundary conditions involve linear
combinations of y and y'.

The sets of equations (9) and (10) may again be solved
by an iterative Gauss-Seidel procedure. It should be
noted, however, that the coefficient of as in (9) contains
terms of order s2. This means that the set of equations
has large terms away from the diagonal, and conse-
quently the efficiency of the iterative process will be
diminished; indeed, in some cases the process may not
converge at all. In these circumstances, it may be
preferable to discard the iterative method and use an
elimination procedure to solve the first (« — 1) of
equations (9) for the unknowns a2, a3, a4,. . . an. A
similar situation arises in boundary-value problems
when the boundary conditions involve y' as well as y.
When, however, the boundary conditions involve y only,
the s2 terms do not occur; it will be seen that the set of
equations (10) has a very strong diagonal, and the
iterative process is therefore rapidly convergent. (Strictly
speaking, of course, the convergence of the Gauss-Seidel
process depends on the magnitude of the latent roots of
an associated matrix, rather than on the strength of the
diagonal; but a strong diagonal is usually a fair indi-
cation that the process will converge quickly.)

As an example, the equation

/ ' - (x* + 3x2)y = 0, XI) = X - 1) = 1, (11)
will be considered. The solution is clearly an even
function of x, so that only a2, a4, a6,. . . need be found.
The steps in the solution are set out in Table 2; the final
solution is

y = 0-858952 + 0-108828 T2(x) + 0-030184 T4{x)
+ 0-001757 T6(x) +0-000263 T8(x) +0000014 TlQ(x)
+ 0-000002 r , 2(JC) + . . . (12)

The correct solution of (11) is y = exp {K*4— 1)}, so
that y(0) = 0-778801; the value of y(0) obtained from
the series (12) is 0-778802.

Eigenvalue problems
Since any linear differential equation can be trans-

formed into an infinite set of simultaneous equations in
the coefficients an any linear eigenvalue problem can
similarly be transformed into a determinantal equation
of infinite dimensions. In general this equation can be
solved approximately by ignoring all except the first n
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Chebyshev series

Table 3

Steps in the solution of the eigenvalue problem y" + A(.r + \)y = 0, y(l) = y(— 1) = 0

k

0
1
2
3
4
5

A = I/A

0-417
0-4231
0-42185
0-42203
0-42202

a2

1
1
1
1
1

0-
0-
0-
0-

17
152
15316
15304

- 0
- 0
- 0
- 0

as,

•05
•048
•04816
•04814

- 0 -
- 0 -
- 0 -
- 0 -

as

02
021
02090
02087

- 0
- 0
- 0

Of,

•001
•00072
•00073

0-
0-
0-

a,

001
00065
00065

0-
0-

as

00012
00012

rows and columns of the determinant. When, however,
the eigenvalue problem involves a differential equation
of the form

y" + XP(x)y = 0

a more powerful method of solution is available, based
on the iterative procedure already described. This type
of problem will therefore be considered in detail.

Suppose first that the boundary conditions are of the
form y{— 1) = y{\) = 0. With the same notation as
before, it follows immediately from equation (10) that

A 2 (tf,-i,, - </,
s=2

This may be written as

r = 0 , r > 2.

where

and

2 brsas = Aan r > 2,
s=l

A = I/A.

The eigenvalues A of the differential equation are there-
fore given immediately by the latent roots A of the
infinite matrix [brs\; and the determination of the funda-
mental eigenvalue (which is often the only one required)
is equivalent to the evaluation of the largest latent root
of the matrix. The iterative method suggested below
for determining the fundamental eigenvalue is in fact a
slight modification of the familiar iterative procedure
for calculating a dominant latent root.

In general a2 may be expected to be the largest of the
ars when a0 and ax have been eliminated; it is con-
venient therefore to take a2 as unity throughout. (A
few obvious changes will be necessary if a2 vanishes,
e.g. if y is an odd function of x.) The iterative procedure
is then defined by the formulae

= 2 t-i)

s=2

df = 1
«)-6rr)a»)= 2 •

.1=2
^ + 2

(13)

It will usually be convenient to start with a2
0) — 1, and

aW = 0 for r > 3. As before as many ars as are
significant are retained at each stage of the iteration.

As an example, consider the equation

y" + X(x + l)y = 0, = y(~ 1) = 0. (14)

The steps in the solution are set out in Table 3. It will
be seen that A = 0-42202, so A = 2-3696; the correct
fundamental eigenvalue of (14) is in fact 2-36953. The
corresponding solution of the differential equation is

y = A[- 0-95125 -0-13282 T,(x) + T2(x)

+ 0-15304 T-lx) - 0-04814 T4(x)

- 0-02087 T5(x) - O-OOO73 T6(x)

+ 0-00065 T7(x) + 0-00012 T8(x) . . .] .

The above method can also be used when the boundary
conditions involve y' as well as y. For differential
equations of the form

y" + XP(x)y = 0,

equation (8) can be written in the form

where A = I/A as before. The two boundary conditions
may be used to eliminate a0 and at from (15), so that it
reduces to the form

GO

2 btfls = Aar, r > 2.
s=2

The values of A and ar can then be determined by the
iterative procedure (13).

For example, for the equation

/ ' + A.y = 0, y{\) = 0, y'(- 1) = 0,

equation (15) reduces to
ar-2 , ar ar+2

4r(r — 1) T 2{r2 - 4r(r
= Aar,
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Chebyshev series

Table 4

Steps in the solution of the eigenvalue problem y" + \y = 0, y(l) = 0, y'(—l) =

k

0
1
2
3
4
5
6
7

A = l/A

1-42
1-67
1-60
1-622
1-621
1-6213
1-6211

1
1
1
1
1
1
1

- 0 1 7
- 0 1 2 5
-0-1346
-0-1323
-0-13270
-0-13260

as.

- 0 02
- 0 0 1 3
-0-0133
-00131
-0-01312
-001312

0 001
00011
00010
0-00104
000104

a6

00001
0 0001
0-00007
0-00007

and the initial conditions are given by

$a0 + ax + a2 + a3 + a4 + . .
ax — 4o2 + 9a3 — 16a4 + . .

The iterative procedure is therefore

24A<« = 34 - ^

= 0
= 0.

- 288a<*-» +

(48A<« — = — 8 —

= - (r + \)a«±2

- (r - l)a»+-2
!), r > 4.

The steps in the solution are set out in Table 4. It will
be seen that A = 1-6211, so A = 0-6169; the correct
value of A is, of course, 772/16 = 0-61685.

In order to find eigenvalues other than the funda-
mental, it is necessary to eliminate the dominant latent
root from the matrix [brs]\ the method of doing this
has been well described in Modern Computing Methods
(1961), page 26, and need not be repeated here. When
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