
Interaction between user's needs and language-compiler-
computer systems

By A. S. Cormack*

The intention of this paper is to explain some of the difficulties which surround the implementation
and design of commercial languages for computers. It is aimed at helping the user or potential
user to decide what system is best suited to his purpose. An abbreviated, version of this paper
was presented at the Joint Computer Conference held in Edinburgh in April 1964.

This paper admits the existence of commercial languages
and advances no particular arguments to support or
oppose them. In the opinion of the author, computer
languages have been the subject of sufficient publicity,
comment and criticism, over the past few years to enable
any interested party to form his own opinion on their
general merits.

The small minority of confirmed agnostics, who derive
aesthetic pleasure from bit manipulation and intricate
order modification, are unlikely to be seduced by any
system less elegant than their own; but the hardened
core of realists who have suffered the tedious process of
preparing and testing large commercial programs are
now convinced of the value of machine-independent
languages as programming tools, and are merely con-
cerned about the effectiveness of the ones currently
available.

To these two groups may be added a third, consisting
of all those on the fringe of the computer world who
have not yet used a computer but have decided, for a
variety of reasons, to purchase one and are shopping
around for the one most likely to suit their purpose.

The object of this paper is to examine some of the
problems that arise, both in the design of languages
which are independent of the machines with which they
are intended to communicate, and in writing compilers
to translate these languages for any particular machine.

Three classes of languages are considered and the inter-
relation of each language with a range of computers is
examined. It is hoped that by taking these imaginary
language-compiler-computer systems and investigating
the advantages and disadvantages of each, a clearer
picture may emerge which will help the user or potential
user to assess more accurately his own needs.

Language concepts
It cannot be too strongly emphasized that any

procedure-oriented language, whatever its class or
complexity, must have as its foundation a set of clearly
defined concepts, all of which are related to each other
in such a way that the final structure is stable, although
not necessarily inflexible. Any inconsistencies will, of
necessity, inhibit the growth of such a language since
they may produce disastrous side effects when the
language is extended.

It is only too easy to seize upon a feature that appears
to be both elegant and powerful, as indeed it may be in
its proper context, and try to work it into a system which
is not designed to accept it. One of the misfortunes of
the language designer is the necessary shelving of good
ideas which do not fit the system, and one of the dis-
advantages of some of the languages which have been
designed lies in the fact that the originator was not
sufficiently ruthless in this direction.

It is perhaps advisable at this stage to clarify one of
the misconceptions that has developed with program-
ming languages concerning their ease of learning and
use. No criticism is directed intentionally, implicitly or
explicitly, towards any language on the grounds of
complexity alone. Clearly, a language is merely a
sophisticated tool and, as such, depends to a large extent
upon the intelligence of the user for maximum effect.
The more a language does for you the harder it is to
learn, but the greater the effect it has, both in speed of
writing and conciseness. Only where the complexity has
an adverse effect on the system as a whole, both from
the implementation angle and the efficiency of the final
object program, can it be justifiably criticized.

Language-compiler-computer systems
The emphasis throughout the paper is placed upon the

whole computer system, and it must be clearly under-
stood that the evaluation of commercial programming
languages on their own is an extremely difficult task.
Misleading conclusions may be drawn if the relationship
between one such language and its implementation on a
particular computer is not also taken into account.

As software support improves so does the compiler
become more and more just a part of the total operating
system. A rather loose analogy may be drawn between
a computer system and a modern car, where the engine
represents the compiler and the transmission represents
the input-output control system handling the peri-
pherals. The major effort in the development of the
modern car, from the functional standpoint, is directed
towards increasing the power/weight ratio of the engines,
and distributing the load evenly across the various work-
ing parts to minimize mechanical failure. In a similar
way the computer system, instead of exhibiting the
uneasy relationship which used to exist between the

* National Cash Register Co. Ltd., St. Alphage House, Fore St., London, E.C.2.

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/8/1/8/489911 by guest on 13 M
arch 2024



User's needs and compiler systems

compiler and the rather primitive peripheral routines
then available, is, or should be, a balanced whole with
the compiler providing the driving power under the
control of the operating system, and the input-output
system providing the transmission to the peripherals.

It is precisely this balance which is so difficult to
achieve, and it is here that the analogy starts to break
down. The car manufacturer is not in the least concerned
with producing a universal engine which will fit the
whole range of his models, but the computer manu-
facturer ideally would like the input to his compiler to
be restricted to one language. Unfortunately, this is
not currently possible, and the reason it is not possible
is because of the continual, and as yet unresolved,
struggle to define a language which is sufficiently
powerful for effective use on large computer systems
and, at the same time, can be efficiently implemented on
smaller systems. The addition of options and features
which the language does not need but efficiency demands,
has made subsequent efforts at extracting effective
subsets for smaller systems extremely difficult.

As a result, a need has arisen for a lower-level language
which, while maintaining the desirable feature of machine
independence, can be readily implemented on smaller
computers. Provided that sufficient care is taken in the
design of such a language, it has the additional merit
that it can be extended to take advantage of the more
powerful features of the larger systems.

Language X
Most of the major commercial languages that have

been developed over the past few years have the same
general characteristics and structure, and the first
language to be considered belongs in this category.

Data are considered to be unrelated to the procedures
that act upon them, and are therefore defined separately.
Within the data division, the concept of levels is intro-
duced so that a field within a group within a record is
recognized in a single statement.

Within the procedure division, a full range of com-
mands is defined which include complex compound
conditions, Boolean and logical operators, asynchronous
processing and recursive procedures, powerful arith-
metic facilities, and a large number of options to allow
different machines to take full advantage of individual
hardware features. Segmentation is specified implicitly
by the source programmer, and storage allocation is
handled dynamically by the system supervisor.

Potentially, then, this is the most powerful language
of the three which are discussed in this paper, by virtue
of its size and scope. The language is assumed, hope-
fully, to be both well defined and free from unnecessary
restrictions, and the only major criticism to which it is
open concerns the arbitrary separation of the procedures
from the data upon which they act.

This imposes an unnecessary rigidity on the language
since it ignores the inter-relation between procedures and
data. If the division between the two were removed, a

number of the unavoidable static parameters could be
replaced by dynamic ones with a consequent gain in
flexibility.

Now let us consider the implementation of Language
X on a large, fast computer.

Because of the computer's size the compiler may be
assumed to fit fairly comfortably without undue restraint,
and because of its speed the time taken to translate from
source program to final object program may be assumed
to lie within acceptable limits. In addition to the
problem of producing an efficient translation pass it is
the aim of every compiler writer to generate optimum
coding in the run-time program, and it is in this area
that the generality of the language causes the greatest
difficulty.

An unrestricted system of dynamic segmentation may
be extremely helpful to the user but it creates an intoler-
able situation when the program is being obeyed. It
presupposes relocatability of all segments without any
indication to the compiler of segment priority.

The supervisory system has to create a table carrying
all the information about the various segments into
which the program has been divided. This table must
be made available to the executive loader which activates
the segments as and when they are required, and the
loader must, in turn, arrange to shuffle the segments as
they come in and out of use in order to make the best
possible use of the storage space available. In the
process of doing this it has to alter the references to all
segments which have changed position before it can
hand back control to the main program.

Clearly, if the segments are fairly small and of high
activity, the time taken changing segments will be a large
proportion of the actual running time. Again, if
recursive procedures are allowed and do not have to be
defined as such, one of the following two situations will
arise.

Firstly, the compiler must allow for the possibility
that every procedure may be called recursively, and
generate coding accordingly. This is the more naive
approach since it is expensive both in time and space
for the object program. Secondly, there must be a
mechanism built into the compiler which examines each
procedure and generates the coding for a recursive
procedure only when it is necessary.

The latter course, even though it will add to the
compiling time, is the more acceptable, but even this
method has its limitations. It is possible, for instance,
to imagine a case where the programmer may know that
a particular procedure will never be called recursively,
because he has access to the logic of the program. The
compiler, on the other hand, has no such special
knowledge and therefore must cater for the most general
case.

The concept of levels of data was introduced because
it was considered to reflect more closely the current
procedures of manual filing which computer systems are
replacing, and thus it was considered easier for the
apprentice programmer to understand. In no way does

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/8/1/8/489911 by guest on 13 M
arch 2024



User's needs and compiler systems

it improve run-time efficiency, and indeed it creates
particular problems of its own.

Great care must be taken by the compiler writer to
ensure that any reference to an element at a low level,
which is denned explicitly in the source program, gives
rise to the generation of a single direct access in machine
code. It is only too easy, under the continual pressure
of effort to meet unrealistic deadlines, to access each
level indirectly using the simple cascading link technique.
Since inner loops and arithmetic expressions usually
refer to elements at the lowest level it is of great impor-
tance that these references generate minimum coding.

It is also important for the programmer to remember
that not all procedure commands may refer to all levels
of data, and it is necessary to keep clearly in mind the
distinction between those procedures that are per-
missible only with primitive elements of data and those
that may refer to higher levels.

The preceding remarks describe very briefly the major
problem areas in the implementation of Language X,
and clearly they all apply to an even greater extent when
related to medium-sized computer systems.

If the speed and capacity of the memory are sufficiently
great, the loss of efficiency at run-time may, to a large
extent, be disguised; but the less peripheral-bound the
system becomes, the more apparent becomes the dis-
crepancy between generated coding and optimum
hand-coding.

In addition, with medium-sized systems, considerable
restraints may be put upon the compiler, forcing the
designer to increase the number of passes to such an
extent that the compiling time becomes an important
criterion in the assessment of the complete system. The
argument that short cuts which streamline the compiler
are justified in this case has little appeal if the efficiency
of the run-time program is materially affected.

A large number of commercial data-processing jobs
are relatively simple and may be processed using standard
techniques for updating, analysis, sorting, etc. A rough
estimate of 20% to 30% of the available facilities of
Language X are needed for such jobs, but the
mechanisms for handling all the available facilities are
of course present, and one of the penalties that must
be paid for the considerable generality of Language X
is that unused mechanisms take up space.

In addition to the space taken by these mechanisms
a number of them are activated automatically during
every compilation. Even though the response in most
cases may be of the form "no action" and the time taken
for a specific case is trivial, the cumulative effect of
activities which occur for every primitive of the language
at every occurrence during the source program may be
considerable.

On the medium-sized computer, therefore, priorities
such as speed of execution and length of compilation
assume a greater significance, and the potential user
would be well advised to consider carefully whether his
requirements justify the use of Language X or whether
a simpler language would fulfil his purpose better.

If we now move on to the implementation of Language
X on a small computer, it becomes immediately apparent
that the compilation time has increased to such an
extent that it lies well outside the acceptable limits, and
that any attempt to use Language X on such a system
would be totally impracticable.

Language Y
The underlying philosophy of Language Y is one of

simplicity, clarity and flexibility. Attempts to introduce
features which may, on the surface, be attractive to
programmers, but can only have an adverse effect on
either the compiler or the generated object program,
have been resolutely resisted. What is offered is intended
to be the minimum effective language for commercial
data processing.

Concessions have been made in cases where it has been
considered justifiable in the interests of easier pro-
gramming so that, although basically data are treated
as elementary items throughout, the concept of a record
exists to permit the easy interchange of data between
backing store and main memory. In general, however,
the wealth of possible expressions, such as compound
conditional phrases, that could have been permitted, has
been deliberately reduced in order to make learning and
accurate use easier.

In contrast to Language X, Language Y accepts the
relationship between data and procedures, and no
separate description of data is required of the user.
Items may be defined during the procedures which use
them, and provision is also made for the definition of
contiguous strings of information so that list handling
and record filing may be handled quickly and efficiently.

Since computer systems exist where the relationship
of the logical record to the physical record must be
considered in order to generate efficient object coding
for filing on a backing store, only one level of data is
permitted. Clearly, a considerable amount of special
knowledge of how the compiler handles files, which
contain records of complex structure, is necessary to
program such computer systems efficiently. A very
limited amount of such special knowledge is necessary
where only one level is allowed.

The procedure division contains a logically complete
set of imperative statements, simple conditions, Boolean
expressions and the usual arithmetic operations such as
add, subtract, multiply and divide. More complex
arithmetic is handled by means of a set of calculate
functions which may be extended to include those
operations that are specific to particular fields of business.
Input/output functions are provided to handle paper
tape, magnetic tape, punches, line printers, card readers,
etc. Segmentation is permitted but must be specified
by the user.

Language Y, then, lies much closer to the machine
than Language X, and enables the user to exercise
tighter control over the operation of the program and
the positioning of the data.

10

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/8/1/8/489911 by guest on 13 M
arch 2024



User's needs and compiler systems

The greater flexibility of Language Y is achieved at
the expense of slightly greater effort on the part of the
programmer. The emphasis has shifted to a certain
degree from the compiler to the user so that he has
slightly more work to do, in the sense that he has to
build his system from "bricks" rather than "pre-
fabricated" slabs.

The implementation of Language Y on any of the
range of computers mentioned presents no particular
problems, although the minimum system must of
necessity have some form of backing store.

Since the installation of a computer system represents
a sizeable capital investment, potential users usually
have a well denned major role for the computer to play
before considering a purchase. Once the purchase has
been completed and the system is operating satisfac-
torily they are reluctant to experiment further because
of the considerable programming effort that is required.
This is perhaps a pity, because the potential of the
computer extends far beyond the normal day-to-day
processing for which it may have originally been bought.

The structure of Language Y is such that it is com-
paratively simple to extract the basic features of the
language without regard to the more sophisticated
facilities. It is to be hoped that the considerable pro-
gramming effort saved by the use of this fundamental
set will encourage users of the future to be more adven-
turous in the field of experimental investigation than has
hitherto been feasible.

Language Z
The third language to be considered possesses totally

different characteristics in that it is a problem-oriented
and not a procedure-oriented language. In other words,
it has been designed specifically to cater for one par-
ticular problem or, more generally, one particular class
of problem.

A survey covering a wide spectrum of jobs passing
through a number of service bureaux yielded a large
number of functions which were common to most
commercial data-processing problems. These functions
were then analyzed carefully, extended to full generality,
and incorporated in a function library.

Activation of these functions, including the automatic
linking of one function with another, is achieved by the
input of a string of parameters to the generator. All
the parameters necessary for each function are carefully
defined and specified on pre-printed parameter sheets
which represent the only form of input necessary to the
generator.

The criticism normally levelled at packaged programs
is that they are either not general enough to cover all
cases, or that they are too general, and therefore too
wasteful, to cater for a specific case. This does not apply
with Language Z since the technique of selective genera-
tion, under control of the parameters, is used, and the
functions may therefore be as general as is necessary.

One of the attractive features of this language is the
rapidity with which it is possible to transform the overall

system specification into a running program. All that
is necessary is the preparation of a flow chart indicating
the functions that are to be used and the order in which
they are to be linked, the completion of the parameter
sheets relating to these functions, and the transfer of
the information from the parameter sheets to punched
cards or paper tape for input to the generator.

The definition of the data which are to be used by
each function is included on the parameter sheet for
that function and, although it is advisable to keep a
check of the data on date record layout forms, this is
purely for the sake of documentation and does not form
part of the input.

Another feature which appeals is the logical soundness
of the language structure. It is apparent from the
specification that the basic concepts have been rigidly
adhered to throughout and that no attempt has been
made to go over the prescribed limits set by the language
definition. This consistency is by no means evident in
a number of other languages which have nevertheless
gained considerable support.

The language was designed to handle at least 50 % of
all commercial data-processing problems, and although
practice indicates that the figure may be nearer 80%, it
must be realized that a language of this sort cannot be
expected to satisfy the needs of a software support
system on its own.

Within the defined scope it is extremely effective, but
the rigidity of the structure causes a very rapid falling
off of efficiency if attempts are made to apply it in areas
outside its range. The implementation of such a language
on any of the range of computers considered in this
paper presents no particular problems since the larger
part of the generator consists of the function library
which may be held on the backing store of the system.

In any system which is equipped with a reasonably
sophisticated assembler, it is more likely to be the
assembler which defines the minimum configuration
rather than the Language Z generator. The only
proviso that is added concerns the main memory size
which must be sufficiently large to hold the main control
program. This program inputs the parameters, accesses
the functions and hands over control to the individual
function generators which must in turn output the
source lines to the assembler.

E.C.M.A.
Throughout this paper attention has been concen-

trated on explaining in general terms some of the
difficulties that face compiler writers. To most exper-
ienced programmers and all software specialists these
remarks may seem naive and obvious, but to those users
who are not specialists in this field and who merely want
guidance in choosing their systems, it is hoped
that this paper may be of some assistance. As an
additional aid the user may like to refer to a paper
originating from one of the technical committees of
the European Computer Manufacturers Association.
(ECMA/TC2/64/11.)

11

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/8/1/8/489911 by guest on 13 M
arch 2024



User's needs and compiler systems

Briefly, the paper defines a matrix where the rows
represent system features and the columns, users'
criteria. Two appendices accompany the paper and
each appendix gives a brief explanation on each feature
or criterion, respectively. The matrix is a ternary-value
matrix where each element is either positive (+),
negative (—) or zero (.), depending on whether the
possession of a particular feature has an adverse,
beneficial or null affect on the corresponding criterion.

Attempts to attach quantitative values to the in-
dividual elements of the matrix were abandoned as being
too controversial, but the user is encouraged to attempt
his own quantitative assessment if he so desires.

Conclusion
Those most immediately concerned with the develop-

ment of computer languages are, of course, the major
commercial users like the government who have a large
number of programs distributed across a wide variety of
machines and are faced with the problem of transferring
these programs from one machine to another, but there
are a large number of other users who have been content
to stand on the side lines and watch the progress of these
languages while taking little active part in their
development.

This is a perfectly understandable attitude to take
while the situation remains comparatively fluid, but there
comes a stage, which has now been reached, when most
of the major ground-work has been completed and
further development can only come from widespread
field trials. It would be encouraging if, in the future,
users were prepared to lend support to these techniques
which can only be to their eventual benefit.

Reference
Requirements for Programming Languages (1964) ECMA/TC2/64/11. (Obtainable from E.C.M.A., Rue d'ltalie 11, Geneva,

Switzerland.)

Book Reviews

Progress in Operations Research, Vol. 11, edited by DAVID B.
HERTZ and ROGER T. EDDISON, 1964; 455 pages.
(London and New York: John Wiley and Sons, 84s.)

One would not expect this to be a treatise on computers,
and yet there are so many points of contact between the
worlds of Operational Research and computers that it is
surprising to find only infrequent examples referred to.
For a student of computer applications, however, these
accounts of O.R. in all the major areas of business manage-
ment and industry have a great deal to offer, not so much
because O.R. is itself demanding more and more from
computers, but because their use in business can be relatively
ineffectual without the O.R. approach to management
problems.

Not unexpectedly, simulation by computer appears in
several contexts, and is clearly responsible for much of the
contact between O.R. practitioners and computers. Unlike
the first volume in this series, however, this is not a book on
techniques, and the substantial variations which exist among
simulation techniques and procedures are not discussed
here.

The editors, prominent in O.R. on either side of the
Atlantic, present in this volume contributions from the
United States, United Kingdom, France and Canada. The
early chapters deal with several classes of problem which
arise in most organizations, while the remainder of the
survey is of applications of O.R. in Government and in
several industrial groupings. Inevitably, some authors have
found it difficult to produce an international balance in the
content of their papers, but there are extensive bibliographies.

Those not already familiar with Operational Research
in this country should not assume too readily that the
counterpart of all the American work that is mentioned can
be found here in Britain, nor vice versa. In particular, it is
distressing to find in one contribution from the U.S. a tribute

to managements who use inventory simulations to "make
their inventories a truly effective competitive weapon against
labor, vendors, and other industries." Fortunately, evidence
abounds elsewhere that O.R. is playing a more responsible
role than that.

D. G. OWEN

Perspectives in Programming, edited by R. T. FILEP, 1963;
324 pages. (London: Collier-Macmillan Ltd., 45s.)

This book is a collection of papers presented at seminars in
American Universities during 1962. Despite this, the
material has been collected together in a commendable way
by Mr. Filep so that it falls naturally into sections, and
consequently it is possible to read the text more as a book
than as isolated descriptions of various aspects.

The first reading of the book left me with a considerable
appreciation of the enormous amounts of money and resources
which must be ploughed back into education both in the
technologically advanced and in the emerging nations (an
excellent contribution by Komoski). Any educationally
viable system which can increase productivity in education
must be welcomed; and it is hard to understand much of the
opposition in this country to programmed learning in general,
and teaching machines in particular, which appears to be
based on very flimsy knowledge. Whilst there is no panacea
for this demand for education, anything which can contribute
towards its satisfaction is worthy of consideration, and this
book can be used to introduce many people to this type of
instruction.

The book starts with four papers setting out the basic
facts and arguments concerning programmed instruction—
and anyone who has never even heard of Pressey or Skinner
can start quite happily at the beginning of the book. The

(Continued on page 20)

12

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/8/1/8/489911 by guest on 13 M
arch 2024




