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The success of the QR algorithm depends critically on the choice of the shifts of origin. This
paper describes a method of choosing this shift which ultimately gives cubic convergence to the
root of smallest modulus whatever its multiplicity.

In the practical application of the QR algorithm for the
computation of the eigenvalues of a matrix Au sequences
of matrices As, Qs and Rs are derived which are denned
by the relations

As-kJ = QSRS RsQs + kj = An (1)

where the Qs are unitary and the Rs are upper-triangular.
The quantities ks are chosen so as to accelerate the con-
vergence of the As to upper-triangular form. In this
paper we are concerned with the case when At is real
and symmetric; these properties are then shared by all
As.

If we take ks = 0 for all s it has been shown (by
Francis, 1961) that, provided |A,| = \Xj\ only when
A; = Ay, the As tend to upper-triangular form, and since
we are assuming that A^ and hence all As are real and
symmetric, this means that our As tend to diagonal form.
Apart from exceptional cases (disorder of eigenvalues)
the A, occur in order of decreasing modulus down the
diagonal of the limiting As. We shall consider the case
when A x has eigenvalues A; such that

K-r+l = K-r+2 = • • • =

|A,| > |A2| > . . . > |An_r| |An_r+1| (3)

so that the eigenvalue of smallest modulus is of multi-
plicity r. We show that in this case there is ultimately a
simple method of choosing the ks which gives cubic
convergence to An of the last r diagonal elements of As.

Ultimate form of the As

For any real symmetric matrix At with eigenvalues A;
there exists an orthogonal matrix Q such that

yf, = erdiag(A,.)e (4)

where the A, may be taken in order of decreasing absolute
magnitude. Hence

A, - A n / = e ^ d i a g ( A , . - Xn)Q (5)

Consider now the sequence of matrices As obtained
from Ai by the QR algorithm with ks — 0. Each of the
As has an eigenvalue Xn of multiplicity r and hence
As — XJ is of rank n — r. If we write

A —

V
(6)

then from the general theory of the convergence of the
QR algorithm we know that Gs - ^ 0 , Fs-+ diag (A,)
(i = 1, . . ., n — r) and Hs-> XnIr. Hence for suffi-
ciently large s the matrix Fs -»• XnIn_ r is of rank n — r,
since its eigenvalues are tending to A, — Xn (2= 1,.. .,n—r);
Fs — Xjn_ r is therefore ultimately non-singular. If we
define Bs by the relation

^i\ Ir

[Fs-XJn_r\

- Xjr _
, (7)

then Bs is of the same rank as As — XJ, that is n — r.
But we have

\ Fs-XnIn_,

0 H- XJr- Gl(Fs- Xjn_ r) - • G, _

and hence we must have

Hs - XnIr - GT
S(FS - Xjn_r)-'Gs = 0,

or Bs would be of rank greater than n — r.

(8)

(9)

and if Xn is an eigenvalue of multiplicity r the matrix
diag (A, — An) has r zero diagonal elements and is
therefore of rank n — r. Since QT and Q are of rank n
the rank of Ax — XnI is also n — r.
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Choice of ks

In order to achieve a high rate of convergence it is
well known that ks should be chosen to be as close as
possible to An. We show that the choice ks = (As)nn
ultimately gives cubic convergence. For the purpose of
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our analysis we shall use the 2-norm of a matrix denned
by

jrjc||2/||jf||2 (10)

where ||JC||2 is the Euclidean length of the vector x.
Notice that we do not require X to be square. It follows
from this definition that if the eigenvalues of XHX are
a2, where a2 > a\ > . . . > a2 > 0, then

11*112= a,. (11)

When X is a real symmetric matrix al = |A,| where A,
is the eigenvalue of X of maximum modulus.

We define 3 by the relation

8 = min | A, - AB| (i = 1 , . . . , « - / ) , (12)

and consider first of all iteration with ks = 0. If we
denote the eigenvalues of Fs by X. ( / = 1 , . . . , « — r)
and those of Hs by A)' (/ = « — / • + 1, . . ., n) then

A / - > • A , ( / = 1 , . . . , « — / • ) ,

A,-'^An (/ = « - / • + 1 , . . . , « ) . (13)

Hence given any positive e there exists an s such that

| | <? f | | 2 = | |G , r | | 2 <6 , and |A / -A I I | >?8 .

We assume further that

(14)

€ < j (15)

If s satisfies conditions (14) the matrix Fs — XnI is
certainly non-singular and hence from (9)

H, = Xjr + GJ(FS - XnIn_r)-*Gs

= XnIr + Ms, (16)

where Ms = GJ(FS - XnIn_,)-•(?„ (17)

and hence | |M, | | 2< ||C7J||2 ||(F, - XnIn_r)~
l \\2\\G,\\2

< e2 max |(A/ — An)~'|

<3e 2 /2S<^S . (18)

Relations (16) and (18) show that the convergence of As
takes place in rather a special way. When ||G,|| < c
the matrix Hs differs from XnIr by a matrix with elements
which are of order e2. Immediate consequences of
relations (16) and (18) are

and

Hence

and

| A,'' - An| < 3e2/2S.

< 3e2/2S + 3e2/2S = 3e2/S

| A / - a S 2 | > | A ; - A B | - | f l » - A I I |

(19)

(20)

(21)

(22)

The last of these relationships shows that Fs — cffnl is
non-singular.

Consider now a step of the QR algorithm with
ks = <#,>• I f w e w r i t e

then QJ(AS - flW/) = /?, (23)

and 2 r is itself an orthogonal matrix. We write

QiT
R

Q r x
0

(24)

where the partitioning is conformal with that of A s in (6)
Equation (23) therefore gives

(25)

(26)

(27)

P\Q-

R \ S

•F,-c%I\ Gs -

_ GJ \HS- aW/_

" X ; Y

0 ! Z

and hence
R(F, - a<£l) + SGJ = 0,

RGS + S(HS - aw/) = Z.

Completing the QR transformation we have

Js + \

" X ! Y '

o ! z
PT\RT~

.QT\sT

giving

(28)

(29)

Proof of cubic convergence

We shall prove that | |GJ + 1 | |2 is of order e3 showing
that the process is cubically convergent. We shall need
two simple results for the norms of the submatrices of
QJ. Since from the definition of the 2-norm the norm
of any submatrix is not greater than that of the matrix
itself, we have

\\P\\i< | | 0 . r l l2= l (30)

l |S| | 2<| |f if | | 2=l, (31)
the equalities coming from the relation QSQJ = /• We
have also

PPT + QQT = I (32)

and PTP + RTR = I, (33)

and since the eigenvalues of PPT and PTP are the same
this implies that

PIUHIfilU. 04)
Equation (26) gives

I, (35)
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< e max | A,- — a]

< 2e/S from (22).

Hence from equation (27)

I|Z||2< II^IUII^IUH
< 2e2/S + max | A"

< 2e2/S + 3e2/S

= 5e2/S.

Finally from equation (29)

(36)

\\H, -

(37)

(38)

In connexion with the symmetric LLT algorithm for
positive definite matrices Rutishauser (1960) has
described a method of choosing ks which gives cubic
convergence to the smallest eigenvalue. The proof we
have just given may be modified to show that Rutis-
hauser's technique gives cubic convergence whatever
the multiplicity of the smallest eigenvalue. However,
when this eigenvalue is of multiplicity r Rutishauser's
technique requires the solution of an eigenvalue problem
of order r and is therefore not quite so convenient as
the process we have just described.

Numerical example
In Table 1 we exhibit a matrix As of order four
with the eigenvalues 6, 4, 2, 2, at a late stage in the

References

Table 1

Lower triangle of As

5-81522 813
O-57853 6O5 4 18421247

-003866 598 -0O0586 326
-000506 679 -001912 924

200039 187
000005 135 200016 753

Lower triangle of A
5-95048 519
0-31076 986

—0-00000 168
—0-00000 022

404951 481
0-00000 026

-000000 145

s+i

200000 000
000000 000 200000 000

iterative process. The 2 x 2 matrix GJ is such that
\\Gl\\2 is of the order of 0-04. Since S = 2 the con-
dition e < -̂8 is certainly satisfied so that Hs — 2/ must
certainly be small; in fact it will be seen that it is of the
order of 0-0004. One iteration was performed using
ks = a44 a n d the resulting As+i is displayed. It will
be seen that HGJ+JU < 0-000002, while Hs+1 = 2 / to
working accuracy.
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Book Reviews
Mathematical Theory of Automata, edited by JEROME FOX,

1964; 640 pages. (London and New York: John Wiley
and Sons., 75s.).

This book is the proceedings of a symposium held in New
York in April, 1962. The thirty-three papers are almost all
reports of research done by the authors and not reviews or
expository papers; they are therefore at a high level of
specialization. This is not a book for the general reader,
but it contains a number of interesting papers for reference
by experts in this field. No formal grouping into subjects
has been made though the papers divide into fairly clear-cut
sections: theorem proving, computability, finite-state
machines and self-organizing systems. Those who work in
these areas will wish to have access to the book; it is unlikely
to be useful to others.

A few of the papers can be read by the non-specialist with
little prior knowledge. A review paper by Davis gives a
short and lucid account of some of the classic unsolvable

problems showing the reasons why the problems arose and
their importance. Gelernter describes the methods used in
his heuristic Geometry Theorem Machine to set up theorems
and sub-theorems for the machine to prove. A method of
pattern recognition is described by Unger which uses a
two-dimensional grid of combinational cells to recognize
features of patterns such as concavity to the right or the
presence of holes.

The papers on finite-state machines are made difficult to
read by the absence of a unified system of notation. A
number of mathematical disciplines have contributed to this
subject; the theory of groups and of semi groups, lattice
theory, graph theory and the theory of computability to
mention some examples, and the result seems to have been
that authors have invented cumbersome notations which are
difficult to read and remember.
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