A user oriented programming language®

By Melvin Klerer and Jack Mayi

An initial version of an operational software-hardware system for the purpose of facilitating the
programming and analysis of well-formulated problems is summarized. A modified Flexowriter
is used to generate computer-acceptable input when equations or computable requests are typed
in much the same manner as they would appear in conventional mathematical texts. The purpose
of this paper is to discuss and illustrate the programming language that has been developed to be

used for this system.

There exists a numerically large class of users—par-
ticularly found in the scientific research establishment or
the aerospace industry—whose problems may be
characterized as well-formulated. If their problems
indeed consist of sets of determinate equations and
essentially computable requests, and if adequate methods
of solutions are known, then there is no reason in
principle why the intermediate steps of programming and
analysis should not be done automatically. As has been
pointed out in previous publications (see references),
existing input devices, such as card punches or console
typewriters, are quite inadequate for the direct input of
mathematical equations as they are customarily repre-
sented. Most present input devices can handle only
sequential information, and therefore dictate the essen-
tially linear form which is found in such languages as
FORTRAN or ALGOL. However, conventional repre-
sentation of equations as found in handbooks or
scientific texts demands a two-dimensional form. This
representation is not only more convenient but essen-
tially leads to less ambiguity.

Our input device is (similar to the MADCAP device,
(Wells, 1961)) a Friden Flexowriter that has been
modified so that subscript and superscript positioning
can be done automatically under keyboard, paper tape
reader, or direct computer control. In addition, the
88 available typable symbols have been chosen to give
flexibility both in the typing of equations and the con-
struction of mathematical operators of arbitrary size.
These may be composed manually by typing stroke by
stroke or by pushing an appropriate key in an optional
console keyboard.

Our primary interest is the study of the entire inter-
action of the user, the computer (hardware and software),
the problem, and its solution from an experimental point
of view. Our fundamental philosophical orientation has
been to explore those software-hardware methods that
hold promise for furthering the goal of increased auto-
mation in the problem-solving process. More speci-
fically, this system has been designed not only as a tool

* Hudson Laboratories of Columbia University Contribution
No. 201.

This work was supported by the Office of Naval Research
under Contract Nonr-266 (84).

for the study of problem solving but also of self-teaching
systems. By this we mean that it teaches the user how
to operate itself and, from studying the user response,
it teaches us how to modify the system to a more pro-
ductive and successful use. For example, the first lesson
is given by running a prepared paper tape off-line through
the Flexowriter. Subsequent lessons are designed to
occur as part of the experience in the using of this
system. In part this is done by having the system print
out the way it interprets the user input. Thus, in a
certain sense we are asking the user “‘to play the game”
without first telling him all the rules of the game. He
learns whatever rules he needs, depending on the type
of game he plays, that is, for the type of problem he
presents. For example, if the system has interpreted a
sequence of characters as a string of variables with
implied multiplication it becomes apparent to the user
that he has forgotten to predefine the set of characters
in the manner which will be later indicated. The basic
idea is the attempt to fashion an approach so that the
user learns how to program the system in a purely
informal fashion. At the same time the occurrence of
dubious input forms gives us an empirical basis for
modification of the system to decrease the frequency of
output which must be corrected or redefined. In
common with this attempt to design a self-teaching
system is also the attempt to determine how concise one
can make a user reference manual without impairing its
practical utility. Our present very limited experience
suggests that one 8}- by 1l-inch sheet printed on its
two sides can be quite adequate. Thus, this one-sheet
manual includes the vocabulary list, examples of how
certain mathematical operators can be typed using the
available symbols, some simple rules of presentation in
typing out problems, and some examples of recom-
mended forms of presenting certain types of problems.
More details are given in Klerer and May (1964) but
we can note that our actual pedagogic experience is at
the moment entirely too limited to reach even a pre-
liminary conclusion as to the success of this approach,
either in its utility for education of the user to computer
usage or as a research method for the system designer.
Our further experience in this area will be recorded in
future reports.

I Columbia University, Hudson Laboratories, Dobbs Ferry, New York.

202 Iudy 0z uo 1sanb Aq GOL06E/E0L/Z/8/aI0NE/UlWOD/W0D dNo"olWapese)/:sdRy WO} POPEOJUMOQ

Programming language

The programming language

Our criteria for designing a programming language
have been as follows:

(1) There should be less human effort involved in

communicating with a computer:

(a) less instructions and therefore less errors;

(b) less total time spent in coding a problem and
debugging the problem;

(c) less total time spent in setting up a system
type of approach for a solution of the problem;

(d) less higher level thinking necessary to solve
the problem.

(2) The system should be easy to learn and therefore
be subject to universal use.

(3) It should be adaptable to a wide range of problems
and applications.

(4) The automatic final product should be better than
the hand product, that is, not only cheaper to
produce but of better or equal quality than the
average hand-made version. In this case it means
that the machine-code programs should run at
least as fast as those produced by the average
programmer using present compiler systems or
even machine-language coding. In fact this has
been the stumbling block of most compilers. In
general they are relatively inefficient. While our
compilation time lies in the middle range between
the slowest and the fastest alternate compiler
systems offered by the manufacturer of our
General Electric 225 computer, efficient object
programs are produced. Typical calculations that
have negligible data input run anywhere from two
to four times faster than equivalent programs
produced by the manufacturer’s compilers.

However, our fundamental orientation in designing
the language is not only that it should be easy to use
but also should permit addition of alternate optional
forms as a product of experience with the system. Our
experience so far has been that it is possible to realize a
quite flexible language even given the limitations of
present machines. While some of our elementary forms
are similar to the MADCAP language developed by
Mark Wells (1961, 1963), we believe we have gone
further, not only in the flexibility of representing all
sorts of mathematical operators but also in the elimina-
tion of stylized restrictions for setting up multi-indexed
and compound loops. In addition, our orientation
toward language design has taken a somewhat different
road, being intimately tied to the concept of a self-
teaching system which can be used as a tool for
research into the areas of automatic problem solving.

Illustrations

Fig. 1 is a photograph of a page from Hildebrand
(1956) illustrating his prescription for the Crout method
of solving linear equations. It is quite typical of the
kind of thing that the unsophisticated user tries to

104

NUMERICAL SOLUTION OF EQUATIONS 431

tical with ¢,. Each succeeding element above it is obtained as the result
of subtracting from the corresponding element of the ¢’ column the inner
product of its row in A’ and the x.column, with all uncalculated elements
of the x column imagined to be zeros.

The preceding instructions-are summarized by the equations

je1

al; = a; — ajaf; =29, (10.4.4)
k=1
i-1 -
o= [aﬁ - a,ga;,,.] G <, (10.4.5)
A S s
i-1
¢l = % [r. - z a,f,‘r;]' (10.4.6)
" k=1
and x; = cl — 2 al Ty, (10.4.7)
k=it
where ¢ and j range from 1 to n when not otherwise tricted.t Tt i
seen that ‘he process d-” 1 by (10.4 7\ is iden* *h the ““’
solution’ the Gar ‘on, w*’ terr
(103~
T

Fig. 1.—A typical textbook formulation of the Crout method

program straight out of a text or handbook. As long
as the equations are fairly well behaved and the set is
not too large he will not get into trouble. Fig. 2 is a
version of Hildebrand’s prescription as typed on our
Flexowriter. It can be noted that the body of the
typescript is a fairly reasonable transliteration of the
text indicating double subscripting, large and small
summation signs, implicit multiplication and a non-
linear division format. One might also note that the
case for i = j =1 results in an ambiguous form which
the system interprets properly.

Fig. 3 is an illustration of the fact that the operator
symbols need not be symmetric or well composed, since
the system will correctly recognize the conventional
forms even when they are not symmetric or not centred
with respect to the rest of the equation. Mistakes in
making these symbols are very easily rectified since it
is done in much the same manner as on an ordinary
typewriter; that is, one back-spaces to the error and
simply types over it. As an optional procedure it is
also possible to back-space to the error and press a
special button called “Erase” which is properly inter-
preted by the system. However, none of these operator
symbols exist on the keyboard; they are composed from
elementary strokes, diagonals, bars and special braces.
They can be formed directly from the typewriter key-
board or they can be formed automatically by use of
the auxiliary keyboard console which contains a set of
127 keys to control the Flexowriter remotely. At
present about 80 of these console keys carry photo-
graphs of common mathematical symbols or canonical
phrases. For example, there are small, medium-size
and large-size summation signs and also alternate
variations for the different types of upper and lower
limits. There are various size square brackets and
braces in addition to various size square roots and other

202 Iudy 0z uo 1sanb Aq GOL06E/E0L/Z/8/aI0NE/UlWOD/W0D dNo"olWapese)/:sdRy WO} POPEOJUMOQ

Programming language

DIMENSION A=(20,20), C=20, y=20, X=20, a=(20,20).

READ n.

READ Ai- FROM J=1 TO n AND 1=1 TO n.

J

READ Ci FROM i=1 TO n.

-1
FROM J=1 TO n AND 1i=1 TO n IF 13J THEN “13‘ Aid-; aikakj OTHERW I SE aif
k=1

1-1
Cy- %yxx
FROM 1=1 TO n COMPUTE v,= =1
%43
n
FROM 1=n BY -1 UNTIL 1<1 COMPUTE X,= 7, -
k=141

PRINT 1(2), Xy FOR 1=1, 2, ..., n. FINISH,

%k

[oS
1
(]

AiJ'E:: %1x%
1

i1

Xk.

Fig. 2.—The Crout method as typed on the modified Flexowriter

convenient operators such as integral symbols and
product operators. Production of the equivalent
symbol on the typewriter is effected by simply selecting
and pushing the proper key on the auxiliary console.
The remaining keys on the console are used for initiating
the first lesson on the Flexowriter and for demonstration
purposes, while others are reserved for future imple-
mentations and extensions of the system into the area
of direct user-machine communication.

Fig. 4 is an example of three equivalent programs.
Each results in non-trivially different machine codes,
but, of course, yields the same numerical answer. The
first program is certainly the easiest form. The second
program illustrates how one can use quite primitive
commands if the special nature of the problem so
warrants. The third program illustrates how “DO”
type statements are handled. The command “DO
FORMULA 3 FROM X =0 TO W” will cause all
statements up to but not including formula 3 to be
executed for each value of X =0 to X =W in unit
steps. A more general “FROM” form is permitted as
will be indicated later. The point here is that the
system has been designed not only for the novice but
also for the expert programmer and also for those
situations where, for reasons of efficiency, it is necessary
to use primitive commands.

105

Our explicit vocabulary list consists of only a little
more than a hundred function names such as COSINE,
command verbs such as DO, connectors such as OR
and verbalization of arithmetic operators such as
PLUS. But one can consider the vocabulary list to
include implicitly all the recognizable composed symbols
such as the various size sum operators, product opera-
tors, square roots, and all the various types of brackets
that are recognizable. Of course, the normal arith-
metic symbols, the Greek symbols, the upper-case
alphabet, a partial lower-case alphabet, subscripted and
superscripted quantities, and the corresponding different
alphabet when typed in red is admissible vocabulary to
the language. (A red B is interpreted as a different
variable from a black B.) Certain words are inherently
ambiguous and must be interpreted within the context
of their use. For example, blanks are usually ignored
or are simply interpreted as word delimiters. However,
in certain cases when implied by the context, the absence
of connectives such as the comma or “AND?”, that is
the presence of a blank, will be properly interpreted. In
this sense, there is a grammatical analysis of the
individual statement and missing logical connectors are
filled in as the context permits it. Of course, this type
of grammatical structuring has only a remote connection
with producing object program efficiency. We do it

3
.

202 Iudy 0z uo 1sanb Aq GOL06E/E0L/Z/8/aI0NE/UlWOD/W0D dNo"olWapese)/:sdRy WO} POPEOJUMOQ

Programming language

n+l — n]
2 E A, .B
1358
k=1
n
2 o=LN B
1, j=2ap
L k=B — =1
3B ,+2A .~
n
run
H Ay By AT, 4C,
1=1
o=p° 1,4-1
k+4 5

w D
dx J \
v A+B
n n
¢ PR 1T
=1 J=1
2a
B A(B+CD)2] :] —

([Foei]2

Fig. 3.—Examples of well formed and badly formed composed
symbols which are recognized correctly

\/ r SIN @6

X - | A_BMAX ,

MAX IMUM n=20,

READ n, a=0, READ- w,

READ A,, B, FROM 1=0 TO n. FORMULA 1.

n
n
) {uflen).
J=1
i=0 °

PRINT X,

a=a+l,

FINISH.

PRINT S.

DIMENSION x=20, y=20,

READ Xys Yoo

IF asw GO TO FORMULA 1.
S=a=0, STATEMENT 1. B=a, P=1,
STATEMENT 2, P-PxﬁyB, B=p+1.
IF Bsw THEN GO TO STATEMENT 2,
S=S+an AND a=a+1.
IF wpa GO TO STATEMENT 1.
END OF PROGRAM,

simply for the purpose of allowing a more flexible
language, and also to produce a tighter compiler by
producing canonical forms at some intermediate stage
in the compiling aspect.

Any system of mechanical discourse, no matter how
flexible, must have some rules explicit or implicit, and
our system is no exception to the fact that programming
language rules are, in general, a function of machine
structure. Our rules are not those of natural language.
They are simply a reflection of the finite and we think
quite small memory of available machines. Therefore,
it is for us a simple matter of convenience to require
that the end of a statement be signalled by a period and
the end of a program by the word FINISH or the
phrase END OF PROGRAM. We also require that
the names of variables with more than one character
should be defined by a “‘special variables” statement.
This is not too stringent a requirement as the normal
upper case alphabet, a partial lower case alphabet and
a partial set of Greek symbols may essentially be
doubled by simply typing in red. If a variable has not
been predefined then the system assumes that its initial
value is zero. Superscripts are distinguished from
exponents by simply typing the superscript expression
in red. Comments are introduced by simply enclosing
them in between a set of special braces { } at any con-
venient place in the text. These are not necessary
restrictions and we could have avoided them if we had
wished, but at the expense of a more elaborate translator
than we wanted to construct on our first try. For
example, while a dimensioning statement is not
necessary for singly or doubly subscripted variables,
as long as their range is somehow explicitly indicated
in a program, dimensioning is necessary for those
variables whose dimension is a function of the input
data. (This restriction will be eliminated in the future
versions of the system.) Nonetheless we feel that the
present system has been fairly successful in limiting the
number of explicit rules. Of course the system, by
design, has inherent in it a certain other number of
implicit rules, and these become plain to the user only,

MAX IMUM W=20.
READ W,

FROM X=0 TO W READ Uy, Vye
DO FORMULA 3 FROM X=0 TO W.

p'Oo

o=1.

FROM Y=X TO W COMPUTE 0=0UyVye
p=p+ux0.
FORMULA 3. PRINT p.

END OF PROGRAM,

Fig. 4.—Three alternate formulations of the same program

106

202 Iudy 0z uo 1sanb Aq GOL06E/E0L/Z/8/aI0NE/UlWOD/W0D dNo"olWapese)/:sdRy WO} POPEOJUMOQ

Programming language

FOR r=1, 2, ..., 10 AND FOR 6=-7(.01)w

0
2 -
COMPUTE S_=r SIN°6, C.= /r cos™t o, A=Tr=iTAN(.11rq>6),

2 ¢=1
LOG2cp

V.= _—r

. A+ — AND PRINT r, 6, V,, A.
-G

oc +
o=1
Fig. 5.—An example of an implicit loop

in fact, when he programs those problems where it is
necessary for the system to point out that he has not
used a format which is an acceptable mathematical or
language form, or which has some inherent ambiguity.
Our point of view here is to eliminate a good deal of
formal programming instruction. As long as these
cases are fairly uncommon, then the system can be
considered to be successful in anticipating usage which
is not explicitly covered in the one-sheet system manual.

In subsequent examples, we use the letters E, F, or
G to denote arithmetic expressions, that is, E may
denote the expression A + 2B + i; otherwise a single
variable is meant. Braces denote a choice of forms.
Square brackets denote those forms that are optional,
i.e.,, need not be present. As an example to indicate
the range of indexing, there are several possible variants
of FROM or FOR forms. The general FROM phrase
can be written as:

FROM i =E [BY F] {UEI%L} [J{ : HG

etc.

e.g.. FROM i = E TO G (Unit steps assumed)
FROMi=NBY 2-33 UNTILi >A + B
FROM A =B + 5BY 2 UNTIL Q =20

or in its more restricted form as
FOR P=N,N+ AN,.... M
FOR Q = N(AN)M
eg.: FORi=13,...,49
FORj=0,0'5,...,7-5
FOR j = 0(0-5)7-5

Notice that our motivation here has been to use those
forms which are conventional for ordinary mathe-
matical discourse. Naturally the user is free to use
either symbolic, fixed or floating-point numbers, as
appropriate, and any upper- or lower-case letter may be
used for symbols as long as its value has been pre-
specified in the program. Grammatical use of these
FROM or FOR forms is likewise non-restrictive; for
instance, they can be used either to begin or end a
statement. For example, one can type COMPUTE
X;=A+B; FROM j=1 TO 10 or, equivalently,
FROM j=1 TO 10 COMPUTE X; =A + B;. In
fact, if it is permitted by the context, it can be used at

107

any suitable place within a statement as will be shown
in later examples.

The general structure of the IF statement can be
represented as:

< Y —. ..
< READ . ..
IF F{ = \G THEN! COMPUTE . . .
> GO TO . ..
> CONTINUE
Y = ...
READ . ..
{ . E;;EVISE} COMPUTE . . .
OTH GO TO . ..
[CONTINUE]

where both F and G, as previously noted, can be
arithmetic expressions. An alternate form to handle
more complex logical conditions can be typed as:

IF+—G OR (E<F AND Q =r SIN? §) . ..
THEN . ..
[OTHERWISE . . .]

There is no restriction on the number of “AND’s” and
“OR’s” and parentheses are only necessary to resolve
ambiguous forms.

In order to relieve the user of the burden of setting
up “DO” or “BEGIN-END” type loops in a stylized
form for many problems, we permit what we term an
implicit loop, for example:

FOR i = 1(1)50 AND j = 0 BY 2 UNTIL Y > 2000
READ X; Y{i, j} =2X;; AND PRINT Y.

IF A<B PRINT A, C=D+ E AND GO TO
STATEMENT 1 ELSE GO TO FORMULA 2.

In our opinion this is an extremely powerful and
non-trivial form. Aside from object-program memory
size there is no intrinsic limit on the number of con-
trolling indices or number of sub-statements within the
body of the loop.

Fig. 5 indicates a loop and two indices (r and 6)
controlling five sub-statements. = is interpreted in its
numerical sense, that is, as 3-141 . . .; secondly, use is
made of implied multiplication in the form for S,
together with the conventional SIN? form, T, contains
a convenient summation form and V, the product
notation. Sums and products may be several and
intermixed. Commas are used interchangeably with
“AND” (or blank spaces) to separate sub-statements
within the implied loop. One can also write a statement
such as:

READ A,
COMPUTE Y = KA_i AND PLOT Y, i,— 1,1

MAX

FROM i=1 UNTIL Y > 1.

202 Iudy 0z uo 1sanb Aq GOL06E/E0L/Z/8/aI0NE/UlWOD/W0D dNo"olWapese)/:sdRy WO} POPEOJUMOQ

Programming language

This is an example of a simple loop controlling three
separate statements controlled by one index i, but
whose termination value is a function of a value
generated by one of the sub-statements in the loop
and not known before entering the loop. To illustrate
this type of form within an “IF” statement one can

type:

IF @ >k COMPUTE x = V/(« — k)A, Y =B;x + C,T
AND PRINT Y, «, T, k OTHERWISE COMPUTE
x =2ak, Y =Byx + C,TA AND PRINT Y, «,
T, Kk FROM o =1 TO n WITHIN T = 2 BY 0-01
UNTIL 3 AND FOR k = 0(5)90.

or
IF (X < Y AND y < 0) OR [42 — y/e| > (X — Y)?
THEN COMPUTE Txy = ye? — é AND W =

(YTxy)** AND PRINT W, Txy, X FROM
y =2k +3 BY 0:0lr UNTIL W > 5800 AND
FROM X =1 TO 100 OTHERWISE GO TO
STATEMENT 2.

The first example indicates an IF type statement with
only one Boolean variable resulting in three separate
computations if true and also three separate com-
putations if false, controlled by three indices «, T, and k.
The word “WITHIN”, as used above, is synonymous
with AND FROM or FROM. The second example
indicates how easily Boolean forms may be handled.
The vertical bars have the conventional mathematical
meaning as the absolute-value function.

At the moment our translator occupies so much of
the memory that we must limit a typed line in its most
general form to not more than 192 characters length-
wise by 40 half characters vertically, which is equivalent
to a typed two-dimensional display of 19 inches long by
not more than 3% inches deep. Statements may be
continued on to as many lines as desired (as long as
the compiled object program does not exceed the
available memory). The above examples are also
instructive for the perhaps unique way in which a
comment form is used; that is, Y{i, j} is used to indicate
the functional dependence of Y on i and j even though,
literally, any expression between such simple braces is
treated as a comment and does not generate code.

Of course, data can be typed on the Flexowriter, but
there is no escaping the present general use of cards for
the input of data. In an attempt to avoid undue restric-
tions, our card format is free field; that is, the number
of data points may vary from card to card and may be
either in fixed or floating point form,* or mixed without
the need of any pre-defining information. For example,

* Typical card forms for floating point would be 2-3456,
23:456T-1, 0-23456T1, 234-56E-2, or 0-23456E1.

References

there may be one datum on the first card, five data on
the second card, three on the third and so on. The
system does the necessary housekeeping. Of course,
not only can one read and punch cards but also one
can control a high-speed printer in the usual way by
such commands as PRINT Y; FROM i =1 TO n.
Magnetic-tape operations are also provided for but they
are essentially machine dependent. For reasons of
efficiency we have avoided a general store or retrieve
command where the user would have no control over
the storage medium. To make a general store and
retrieve command that relieves the user of the need to
specify the actual storage medium such as magnetic
core, discs, tape, etc., and yet is efficient requires some
complex decision structures which are not present in
the initial version.

Subroutines and procedures are defined by using the
words SUBROUTINE (Name) or PROCEDURE
(Name) before the named procedure and the words
END (Name) at the proper terminal point. Entry
into the procedure is by the use of the words CALL
(Name), and return to the main program at any desired
point is affected by use of the word RETURN.

As part of the input-output command system one
also provides a simple plotting command such as
PLOT Y, X, A, B. (A and B specify the minimum
and maximum of Y, respectively, as a function of X.)
Column labels and printer or typewriter messages are
provided for by simple commands, such as PRINT
MESSAGE . . . or TYPE . . ., PRINT LABEL . . .,
PRINT HEADING .. ., etc.

In summary we might state that this is an operational,
practical and effective system not uneconomic to im-
plement. The present operational version has been
designed to radically reduce programming effort for
both the novice and the expert programmer, with no
penalty paid in object program efficiency. But this has
been accomplished by internal coding which is very
machine dependent. We do not think we have
exhausted techniques for improving efficiency, and more
general methods for future implementation are being
explored.

Our system efforts are just beginning in areas of
automatic numerical analysis, decision problems and
the more sophisticated areas which we lump into the
general heading of automatic problem solving. Our
perspective in this regard is more adequately covered in
Klerer and May (1964).

Acknowledgement

We gratefully acknowledge the engineering assistance
given us by M. Epstein and the encouragement of R. A.
Frosch and A. Berman. Fig. 1 is reproduced by per-
mission of the McGraw-Hill Book Company.

BALKE, K. G., and CARTER, G. (1962). “The COLASL Automatic Coding System,” Dig. Tech. Papers, ACM Nat. Conf.,

pp. 44-45.
108

202 Iudy 0z uo 1sanb Aq GOL06E/E0L/Z/8/aI0NE/UlWOD/W0D dNo"olWapese)/:sdRy WO} POPEOJUMOQ

Programming language
GawLk, H. J. (1963). “MIRFAC: A Compiler based on Standard Notation and Plain English,” Comm. ACM, Vol. 6,
pp. 545-7.

Grems, M., and Post, M. O. (1959). “A Symbol Coder for Automatic Documenting,” Comp. News, Vol. 147, pp. 9-18, and
Vol. 148, pp. 15-19.

HiLDEBRAND, F. B. (1956). Introduction to Numerical Analysis, New York: McGraw-Hill Book Co.

KLERER, M., and May, J. (1963). “Algorithms for Analysis and Translation of a Special Set of Computable Mathematical
Forms,” Columbia U., Hudson Labs. Tech. Rept. No. 113.

KLERER, M., and May, J. (1964). “An Experiment in a User Oriented Computer System,” Comm. ACM, Vol. 7, pp. 290-4.
Los ALAMOs SCIENTIFIC LABORATORIES (1958). ““Maniac I1,” Comm. ACM, Vol. 1, p. 26.

VANDERBURGH, A. (1958). “The Lincoln Keyboard—a Typewriter Keyboard Designed for Computers Input Flexibility,”
Comm. ACM, Vol. 1, p. 4.

WELLs, Mark B. (1961). “MADCAP: A Scientific Compiler for a Displayed Formula Textbook Language,” Comm. ACM,
Vol. 4, pp. 31-36.

WELLS, MARK B. (1963). “Recent Improvements in MADCAP,” Comm. ACM, Vol. 6, pp. 674-8.

A special-purpose compiler
By C. B. Jones*

This paper describes how a particular computer application was tackled using a ‘“‘Compiler”’
approach, and how the work is to be extended.

Computer applications give rise to many differing forms in the way in which the basic information was coded.
of files. These files are usually organized so that the Information for a field in one format may have been
basic record contains details of options within the item inferred from a number of fields in another format.
type. Thus in the case of an order file, a customer order Example: the following trivial translation problem will
record contains an item number and a set of options be used as an example throughout the paper.
within that item. This paper will consider motor
vehicle order files in which the options coding is both Base coding Col. 21 is type of vehicle:
complicated and extensive: a complete vehicle, with its 1 Car A
options, can be coded on to an 80-column card which 2 Estate A
will be referred to as a V.O.C. (vehicle order card). Codes \ 3 Car B
On the V.O.C. each vehicle option is allocated a field 4 Estate B
(frequently only one column). The value in the field
indicates which of a number of possibilities is required Col. 22 is number of doors:
for the particular vehicle. The size limitation of an 2 Two doors
80-column card necessitates that a number of conditions Codes |, Four doors
cannot be coded directly, and are, therefore, implied.
Thus, in some cases, it is necessary to examine the Required coding Col.31 is body type:
contents of several fields before an option is found to be 1 Car
required. Codes | 5 Egtate
The requirements for a particular vehicle are coded . .
into the V.O.C. manually. The information contained Col. 32 is car type with number of doors:

on the cards is interpreted by a number of computer 1 Car A, two doors
programs for a variety of reasons, e.g. data vetting, 2 Car B, two doors
parts scheduling and model costing. One of the pro- Codes 3 car A, four doors
grams is a translation program which will convert the

4 Car B, four doors.
format and coding of these cards.

The complete translation problem from the base to the

The translation program required coding could be specified in a number of state-

The existence of more than one format for the V.O.C. ments, which assign a value to a field of the new card
posed a communication problem. These formats subject to a set of tests on certain fields in ’_(he old card.
differed, not only in the position of the fields, but also Thus, a typical statement would be “put a 1 in column 31

* Ford Motor Company Ltd., Central Office, Warley, Brentwood, Essex.
109

202 Iudy 0z uo 1sanb Aq GOL06E/E0L/Z/8/aI0NE/UlWOD/W0D dNo"olWapese)/:sdRy WO} POPEOJUMOQ

