Programming language
GawLk, H. J. (1963). “MIRFAC: A Compiler based on Standard Notation and Plain English,” Comm. ACM, Vol. 6,
pp. 545-7.

Grems, M., and Post, M. O. (1959). “A Symbol Coder for Automatic Documenting,” Comp. News, Vol. 147, pp. 9-18, and
Vol. 148, pp. 15-19.

HiLDEBRAND, F. B. (1956). Introduction to Numerical Analysis, New York: McGraw-Hill Book Co.

KLERER, M., and May, J. (1963). “Algorithms for Analysis and Translation of a Special Set of Computable Mathematical
Forms,” Columbia U., Hudson Labs. Tech. Rept. No. 113.

KLERER, M., and May, J. (1964). “An Experiment in a User Oriented Computer System,” Comm. ACM, Vol. 7, pp. 290-4.
Los ALAMOs SCIENTIFIC LABORATORIES (1958). ““Maniac I1,” Comm. ACM, Vol. 1, p. 26.

VANDERBURGH, A. (1958). “The Lincoln Keyboard—a Typewriter Keyboard Designed for Computers Input Flexibility,”
Comm. ACM, Vol. 1, p. 4.

WELLs, Mark B. (1961). “MADCAP: A Scientific Compiler for a Displayed Formula Textbook Language,” Comm. ACM,
Vol. 4, pp. 31-36.

WELLS, MARK B. (1963). “Recent Improvements in MADCAP,” Comm. ACM, Vol. 6, pp. 674-8.

A special-purpose compiler
By C. B. Jones*

This paper describes how a particular computer application was tackled using a ‘“‘Compiler”’
approach, and how the work is to be extended.

Computer applications give rise to many differing forms in the way in which the basic information was coded.
of files. These files are usually organized so that the Information for a field in one format may have been
basic record contains details of options within the item inferred from a number of fields in another format.
type. Thus in the case of an order file, a customer order Example: the following trivial translation problem will
record contains an item number and a set of options be used as an example throughout the paper.
within that item. This paper will consider motor
vehicle order files in which the options coding is both Base coding Col. 21 is type of vehicle:
complicated and extensive: a complete vehicle, with its 1 Car A
options, can be coded on to an 80-column card which 2 Estate A
will be referred to as a V.O.C. (vehicle order card). Codes \ 3 Car B
On the V.O.C. each vehicle option is allocated a field 4 Estate B
(frequently only one column). The value in the field
indicates which of a number of possibilities is required Col. 22 is number of doors:
for the particular vehicle. The size limitation of an 2 Two doors
80-column card necessitates that a number of conditions Codes |, Four doors
cannot be coded directly, and are, therefore, implied.
Thus, in some cases, it is necessary to examine the Required coding Col.31 is body type:
contents of several fields before an option is found to be 1 Car
required. Codes | 5 Egtate
The requirements for a particular vehicle are coded . .
into the V.O.C. manually. The information contained Col. 32 is car type with number of doors:

on the cards is interpreted by a number of computer 1 Car A, two doors
programs for a variety of reasons, e.g. data vetting, 2 Car B, two doors
parts scheduling and model costing. One of the pro- Codes 3 car A, four doors
grams is a translation program which will convert the

4 Car B, four doors.
format and coding of these cards.

The complete translation problem from the base to the

The translation program required coding could be specified in a number of state-

The existence of more than one format for the V.O.C. ments, which assign a value to a field of the new card
posed a communication problem. These formats subject to a set of tests on certain fields in ’_(he old card.
differed, not only in the position of the fields, but also Thus, a typical statement would be “put a 1 in column 31

* Ford Motor Company Ltd., Central Office, Warley, Brentwood, Essex.
109

¥202 I4dy 61 U0 3senb Aq /L ¥06£/601/2/8/81o1e/|ulwoo/wod dno-ojwepee//:sdiy wolj pepeojumod



Special-purpose compiler

of the output card, if there is a 1 in 21 or a 3 in 21 of
the input card”. We shall write this statement more
concisely, i.e. “1, 31 IF 1, 21 or 3, 21”. The statements
which describe the above example are therefore:

1,311F 1, 21 OR 3, 21

2,31 IF 2, 21 OR 4, 21

1, 32 IF (1, 21 AND 2, 22) OR (2, 21 AND 2, 22)
2, 32 1F (3, 21 AND 2, 22) OR (4, 21 AND 2, 22)
3,32 1F (1, 21 AND 4, 22) OR (2, 21 AND 4, 22)
4, 32 1F (3, 21 AND 4, 22) OR (4, 21 AND 4, 22)

It would have been possible to write a specific program
to perform such a translation. However, it is clear
that it would have taken a considerable time to write
and test. The main objection was the problem of
maintenance. The program would have undergone con-
siderable modification when the basic formats changed.
Each modification would need to be implemented quickly
and accurately, as well as being fully documented.

Clearly, a generalized program was required, which
could tackle any translation job of this kind, given some
formal description of the problem. Similar problems
had previously been tackled by an “interpretive”
approach. Briefly, the technique is as follows. The
statements which describe the translation would be
held in a compact form as a table by the program. This
table would be used by a master routine to set up and
perform tests for various options. The table would also
contain information as to what output was required if
the tests found the conditions to be present. Whilst
this technique is simple to program for a computer, it
tends to be extremely slow, although any general pro-
gram of this sort would solve the maintenance and
documentation problems. It is also possible to tackle
the problem using a compiler. The compiler would
use the same basic information as the interpretive
approach, i.e. the table of statements. Instead of using
the table in this form, however, it would assemble actual
machine-language instructions to perform the testing
and field-set-up parts of each statement. Thus, the table
would represent a computer program, written in a special
language, which would be compiled into a machine-
usable form. These instructions would be linked
together as a complete program, so that no time is
wasted in a control routine. The program which is
compiled would then be completely self-contained and
could be executed to perform the specified translation
task in a separate run.

The machine to be used for the translation program
was an IBM 1401 tape computer with a storage capacity
of 16,000 digits. This is a variable word-length, decimal
machine, and is ideal for this sort of task. The field
testing was performed by a compare instruction, unless
the field was only one digit in length, in which case the
branch if character equal instruction was used. This
instruction stores within itself the character for which it
is testing, as well as the address of the position to be
tested and the address of the next instruction if the test

110

is successful. It thus provides a very compact way of
sorting a test on a one-digit field.

Differences between methods

It is important to realize that the difference between
the compiler approach and the interpretive approach is
more than one of degree. In the interpretive approach
the problem statements are stored in the memory of the
computer as a table. As each V.O.C. is read, every
part of every statement has to be examined and actioned.
If the part under consideration is a test on a field, the
test instruction has to be set up and performed; the
result of the test (true or false) is then made known to
the control routine and the instruction is destroyed. It
is, therefore, necessary to test each item of the table and
convert it into machine-code form for every V.O.C.

The compiler, on the other hand, works in a two-
phase mode. In the first phase each item of the table is
examined and its meaning determined, and appropriate
machine instructions are formed into a self-linking pro-
gram. Thus, the output from the compiler is a com-
pletely self-contained program tape which will perform
the translation problem specified by the user. The
machine instructions generated to perform a particular
test will take more storage space than the concise
representation of the test statement used in the table.
With the size of problem we were considering, even the
table approach required that the V.0.C.s were passed
more than once (on work tapes). As is shown below, the
input/output times required for the extra passes of the
V.0.C.s proved to be insignificant.

It was also realized that the input language to the
compiler could be more sophisticated, allowing a smaller
and more efficient representation of the problem. This
was possible because the instructions required to
recognize and translate the extra features, were to be
used only when compiling. In the interpretive approach
these instructions would have been included in the
table-decoding loop which was to be obeyed many times.
This would mean that even with the more compact
representation of the problem, the overall running times
would have increased.

Syntax of the language

This description will refer to the statements which
describe the task in two parts, the test section and the
object clause. The test section will be the part of the
statement which designates the required conditions.
The object clause will describe the output required, if
the tests are found to be true. A fixed format was used
for ease of data reading and punching, the examples,
however, will have the fields separated by , or .

Basic tests are those on single columns, which are
written as the character to be tested for, followed by
the number of the column in which the test is to be
performed.

e.g. 1, 21 specifies a test for the character 1 in card,
column 21.

¥202 I4dy 61 U0 3senb Aq /L ¥06£/601/2/8/81o1e/|ulwoo/wod dno-ojwepee//:sdiy wolj pepeojumod



Special-purpose compiler

Immediately adjacent conditions are taken to be in an
AND relationship. Sets of conditions which are to be
in an OR relationship are separated by an asterisk,
which was less logically binding than the AND con-
dition, e.g. our previous problem is expressed as follows:

1,31-1,21 * 3, 21.
2,31-2,21 *4,21.
1,32-1,21.2,22 *2,21.2,22etc.

Tests on fields containing more than one character
were specified as the string of characters to be tested
for, enclosed by a special symbol @, followed by the
position of the field. Thus the test section of line three
of the above could be written:

@12@,22* @22 @, 22.
The absence of a condition could be tested for, by writing
NOT before the condition. This only affected the
adjacent test.

It was possible to establish a logical flow within the
program by an instruction which allowed the next state-
ment to be other than the next sequential statement.
This branch instruction referred to labels which could be
interspersed with the other statements. Logical switches
were incorporated to reduce the amount of work and to
simplify parenthetical operations. This feature allowed
a number of tests to be defined as a logical switch.
Dependent on the result of these tests, the value of the
switch was either true or false. When the switch was
subsequently tested in another statement, one was
effectively incorporating the original tests. An error
object clause was included to allow data vetting in the
object program. It was possible to intermingle the test
and object clauses in any way: thus, a combination of
simple tests, field tests and switch tests might be used to
set up another switch. A number of other statements
permitted one to copy andfor gang-punch information
into the output of the object program.

The compiler

As mentioned above, the first version of the program
was written for the IBM 1401 and this led to a severe
limitation, in that no description of the input/output
media could be processed.

The compiler works internally as a two-phase system.
The first phase creates a piece of program in core which
will perform the job of a complete statement. The
machine instructions, as formed, will have special three-
character symbolic labels, to which other instructions
can refer. The second phase consists of resolving the
symbolic labels to actual three-character machine
addresses. In fact, only one pass is made as the addresses
are resolved before the program tape is written. An
optional feature allowed the compiled program to be
listed, although it was not envisaged that this would
normally be used in production work.

Having read a complete statement, which may contain
up to two hundred tests, the machine-language instruc-
tions are formed. Error checking is done during the

C

111

compilation, although when errors are found, the
principle adopted is that something should be compiled
to allow the object program to be tested.

When the whole statement has been analyzed a check
is made to ascertain if this record will complete a core
load. If so, instructions must be included which will
write the V.O.C. on to a work tape for the next phase
of the object program. The instructions formed at the
beginning of the next core loading will cause the input
to be taken from the work tape. The last phase will
punch the final output cards. Branches or switch con-
ditions, which overlap core loadings, also have to be
dealt with using the work files.

Timing

Although this program was first written to facilitate
V.O.C. translation, its application to many other pro-
jects was quickly realized. One existing job, on the
1401, had the same basic code recognition problem and
used the interpretive method. This will be used for a
comparison of the timings. The application dealt with
breaking a vehicle down to the assemblies required to
build it, dependent on the options specified in the
V.0.Cs. This job had an analysis table of about
six hundred statements which, on average, consisted of
twenty conditions. The processing time of the inter-
pretive program was about 75 minutes for 500 V.O.C.s.
The time taken for the compilation was 10 minutes, but
recompilation is only necessary when the table is changed.
The compiled object program took only 10 minutes to
process the 500 V.O.C.s. This speed increase is found
despite the fact that the compiler approach requires ten
“core-fulls” of object program, whilst the concise table
occupied only four core-fulls, thus more than doubling
the tape-handling time for the work tape. As these
figures represent the processing of only one vehicle range,
the overall savings of the project were considerable.
This improvement has been made with no recoding
effort for the table, which only uses the AND and OR
features. Use of other features of the language would
reduce running time still further.

Future work

It has been found that a large number of existing pro-
grams contain code recognition which could be described
in the compiler language. However, many of them
handle different records from a V.0.C. In particular
most data-vetting problems fall into this category.
Unfortunately, it is not possible to use the current
compiler to tackle them. Having been written for an
IBM 1401, the program is not able to include more
than one inputfoutput processing option, because of
storage limitations. It is, therefore, necessary to main-
tain a version of the program to tackle each of the jobs
mentioned above.

A larger and faster IBM 7010 with 80,000 positions of
storage will shortly be available, on which it is hoped

¥202 I4dy 61 U0 3senb Aq /L ¥06£/601/2/8/81o1e/|ulwoo/wod dno-ojwepee//:sdiy wolj pepeojumod



Special-purpose compiler

to use a similar program to advantage. The imple-
mentation of the compiler on the 7010 would reduce the
initial programming load and the maintenance problem,
as well as leading to more efficient programs.

The above limitation will be tackled in two ways.
The direct approach will allow input/output media to
be described in formal statements, from which the
compiler will be able to assemble data-handling instruc-
tions. Further generality would be provided by exploit-
ing the features of OPSYS. OPSYS is the operating
system software for the 7010, which includes FORTRAN
and COBOL compilers and an Autocoder assembler.
These are so written as to allow the sub-program concept
to be used with various parts of the same program,
having been written in different languages. Thus, the
code recognition compiler could be put on the systems
tape and use of exits would allow any further processing
to be written in any language.

It is interesting to consider whether any changes should
be made to utilize the different hardware features of the
7010. Although the calculation versus input/output
speed ratio is higher, this must be considered against

the increased storage. It is found that the calculation
volume (as dictated by the amount of program which
will fit in core) bears a similar relationship to the tape-
pass time as that on the 1401, which indicates that the
extra core used by the compiler is still justified. The
7010 has a powerful table look-up instruction which
will be used when a statement consists of tests for many
possibilities in the same field. Thus, in this circumstance,
the compiler will generate one table look-up instruction,
unpacking instructions and a series of fields. The extra
tape units available should allow several tables to be
run simultaneously using partial results of one another’s
tests, and producing their output on different tapes.

Conclusion

The writing of a special-purpose compiler for the 1401
has allowed a number of problems, stated in a problem-
orientated fashion, to be translated to machine language
without programmer intervention. This in turn has
solved documentation and maintenance problems. It
is hoped that a similar system, implemented on a large
machine, would have even wider application.

Book Review

Language H (1962) Manual, 1964; 111 pages.
The National Cash Register Co. Ltd., 42s.)

(London:

The attempt to float Basic English as a world language in the
late forties had no chance of success, not because it was
difficult for the non-English speaker to learn, but because it
was virtually impossible for the English speaker to remember
which of his ordinary words and turns of phrase constituted
the sub-set, Basic English, and which did not. Within the
thicket of his vocabulary, the boundary posts of Basic English
were too undifferentiated to discern.

There is a lesson here for inventors of commercial computer
languages. They assume that the language is easier to use
if their executive functions are words in normal English usage.
They encourage the use of English operands, and they supply
linking words which serve no other purpose than to provide
a spurious semblance of English. They have two aims. They
want the layman to be able to read a computer program.
But why should he? It is none of his business. They claim
that a system flow-diagram can be written in their language,
and lo!—programming is already accomplished. One such
language has developed such an extensive vocabulary that
the programmer is left groping for his boundaries, the pro-
grammer who would perhaps be happier if functions were
given in Latin or Swahili.

Of course we do need computer languages which are not
creatures of a particular machine or machine group. We
need more of the simple basic ones, which will, it is to be
hoped, drive out the prolix. This is why Language H should
be welcome. It does, indeed, use English words rather than
Erse. It employs fourteen words which are redundant or
behave as punctuation “‘but help to amplify the meaning of
the statement”. Presumably these are included to appeal to

112

this importunate layman. The considerations used in
developing the language, however, give a clue to its character.
To quote from the Preface:

“the smallest possible number of effective phrases should

be provided”

“the strain on the memory of the user should be kept as

low as possible”

“The wealth of possible expressions, such as compound

conditional phrases, has been deliberately reduced in order

to make learning and accurate use easier’’
Nobody is likely to quarrel with those aims.

Language H is expected to behave as a high-level language,
but there is none of the tiresome indenting which goes with
compound conditions. The program example given, if it
were not for the linking words, smacks of a symbolic order
code in three-address mode, using literals and interspersed
with macro-instructions. Since the language is not machine-
orientated, the resemblance is mainly on the surface, but
the simple structure should enable relatively simple and
efficient compilers to be developed for machines outside the
National-Elliott range.

On the question of macro-instructions, input and output
are adequately explained as GET and FILE, but I could
find no reference in the manual to hierarchial sorting pro-
cedures, although SORT is used as a reserved word. Indeed,
less than half of the reserved words appear in the index, and
this is inconvenient.

The main text of the manual runs to thirty pages, the rest
being taken up by thirteen appendices, some referring solely
to the machines which already have compilers. A handy
little pocket book is included as a programmer’s aide-
mémoire.

F. 1. Musk

¥202 I4dy 61 U0 3senb Aq /L ¥06£/601/2/8/81o1e/|ulwoo/wod dno-ojwepee//:sdiy wolj pepeojumod



