A KDF9 ALGOL Ilist-processing scheme

By J. G. P. Barnes*

This paper describes a scheme whereby list processing may be performed in KDF 9 ALGOL by
the inclusion of a set of declarations in a program.

1. Introduction

Certain problems now being solved by digital computers
deal with objects which are not of the form normally
encountered in the fields of numerical analysis, engin-
eering design, etc. These problems deal with objects
whose structure is not static, and thus pose a storage
problem.

In ALGOL (Naur, 1963) the only structures allowed
are single items and multi-dimensional arrays. The
arrays must, moreover, be of a fixed number of dimen-
sions and, in KDF 9 ALGOL in particular (see Duncan,
1962), be of fixed bounds for each activation, i.e. no
dynamic own arrays. The ALGOL string is also a static
structure, only explicit strings being allowed (the use of
a string as a formal parameter is also static since it will
at call be replaced by an explicit string).

The storage problem is usually solved by the intro-
duction of the concept of a list. A list is an ordered
sequence of an arbitrary (dynamic) number of objects,
which may themselves be lists. This structure is stored
in a computer by a technique known as chain link storage.

Several programming systems have been devised for
list processing but many of them are difficult to learn
and use. In general they constitute a separate language
and have a separate compiler. The languages themselves
are usually not good for general algebraic purposes and
the compilers do not offer good diagnostic facilities.
There is a lot to be gained by extending an existing
language thereby retaining full algebraic and diagnostic
facilities. An example of this is ALP described by
Cooper and Whitfield (1962).

The system to be described in this paper has features
in common with LISP described by McCarthy (1960).
The system is written in KDF9 ALGOL and consists of
a set of declarations to be inserted into a program. The
system is easy to learn and use, and the full facilities of
ALGOL are of course still available.

A good introductory description of list-processing
techniques is given by Woodward and Jenkins (1961).

2. Lists and atoms

Lists and atoms are defined in Backus normal form
as follows

{atom) ::= {integer) | <nil)

{element) ::= (list) | (atom)

{open listy ::= {element) | {open list), {element)
(list) ::= ({open list))

The objects of our lists are therefore either other lists
or integers. There is in addition the special nil atom
which will be denoted by N. Examples of explicit lists
are

6,9
(@)
(1,2,3),4

Note that the empty list is not defined, i.e. a list has
at least one element. This is not an inconvenience; in
practice N is used in those cases where an empty list
might otherwise arise.

We will use identifiers to represent lists and atoms.

3. Elementary functions

McCarthy defines the following elementary functions
(notation slightly different).

where x is an element; true if x is an
atom, false if x is a list.

where x, y are atoms; true if they have
the same value, false otherwise and is not
defined if x and y are not both atoms.
the head of x. This is defined if x is a
list and is the first member of x. Note
that hd (x) may be a list or an atom.

the tail of x. This is defined if x is a
list and is the list obtained by removing
the first element from x. If x has only
one element it is the atom N.

where x is an element and y is a list or N;
constructs the list whose head is x and
whose tail is y.

atom (x)

eq (x,)

hd (x)

tl(x)

cons (x, y)

Examples
x hd(x) tl(x)
6,9 6 ®
() (@) N
1,2,3),9 1 2,3),49

4. A KDF 9 ALGOL list system

Without rewriting the compiler it is impossible for
the identifiers used for lists and atoms to be other than
of the types normally available. All list elements are in

* Imperial Chemical Industries Limited, Bozedown House, Whitchurch Hill, Reading, Berkshire.

113

¥202 IMdy 61 U0 3senb Ag 6Z¥06E/E L L/Z/8/81o1e/|ulwoo/wod dno ojwepeoe//:sdiy wolj pepeojumod

KDF9 list processing

fact denoted by identifiers of type integer. The value
of this integer indicates where the element is stored.
Storage space for the list elements is provided by two
integer arrays. The size of the arrays is set by the user
in the integer store size. We thus have the declaration

integer array item, link [0: store size] ;

The size of the store set aside for list elements is there-
fore fixed in each application. We define the cell i as
the pair of variables item [i] and link [i]. The element x
is then stored in cell x as follows. (In the sequel we will
refer to “a list x” or “the list whose address is x”
meaning the list stored in item [x] and link [x]).

item [x] is address of head of x
link [x] is address of tail of x

x is a list

x is an atom item [x] is the value of the atom

link [x] = —1

Atoms and lists are thus distinguished by the value of
the link.

The element N is “stored” at address 0. Both item
and link are —1. Thus

item [0] = link [0] = — 1

The last element of a list thus has link equal to 0.
This convention is very useful; it allows Boolean
expressions such as

tH(x)=0

meaning ‘“‘the tail of x is atom N”.

Cells not in use are formed into a list known as the
free storage list. The item of each cell is —1 and its link
is the address of its successor. The last cell of the list
has its link equal to zero. The address of this free
storage list is stored in integer next cell. Whenever
another cell is required integer procedure new cell is
called; this has value equal to next cell and sets next
cell equal to its (old) link. At the start of any use of the
system all the cells of the store are placed on the free
storage list by a call of the procedure initiate. Note
that cells not in use are distinguished by having
item = — 1. Several checks are applied to ensure that
cells on the free storage list are not inadvertently
manipulated by the user.

Example

Suppose that store size = 8 and that the store is as
follows

i item [i] link [i]
0 —1 —1
1 2 3
2 6 —1
3 4 0
4 9 —1
5 —1 6
6 —1 7

114

7 —1 8
8 —1

Then we say that

cell 0 contains N
1 6,9
2 6
3)
4 9

and cells 5, 6, 7, 8 are on the free storage list.
The number of cells required to store a general list is

2a+n+5b—1
where
a = number of atoms excluding N
n = number of N
b = number of pairs of brackets.
Example

(1,2,N),3)requires2 x 3+ 1+ 2 — 1 = 8 cells.

This may seem extravagant but it should be noted
that duplicated atoms or sub-lists need only be stored
once.

(1, 1) could require 4 but needs only 3 cells.

(7, N), (7, N)) could require 8 but needs only 5 cells.

5. Elementary procedures
The facilities of McCarthy’s elementary functions are
provided by the following ALGOL procedures.

is true if x is an atom false
otherwise.

boolean procedure atom (x)

is true if x and y are both
atoms or both lists and in
the former case they have
equal value, and in the
latter if they are lists of
identical structure whose
corresponding atoms are
equal in value. Note
that N is equal only to
itself.

boolean procedure equal (x, y)

is address of head of x,
i.e. item [x]. If xisnota
list a fault is indicated.
(N.B. If x is a cell on the
free storage list the fault
is also indicated. This
remark applies to all
operand checks.)

integer procedure hd (x)

is address of tail of x, i.e.
link [x]. If x is not a list
a fault is indicated.

integer procedure ¢/ (x)

¥202 IMdy 61 U0 3senb Ag 6Z¥06E/E L L/Z/8/81o1e/|ulwoo/wod dno ojwepeoe//:sdiy wolj pepeojumod

KDF9 list processing

is the address of a new
list whose head and tail
arexandy. Ifyisnota
list or N a fault is indi-
cated. Each time cons
is called a cell is removed
from the free storage list.

integer procedure cons (x, y)

Because of the way in which atoms are stored instruc-
tions are necessary for finding their value and for
constructing them.
gives the value of the

atom x. If x is not an
atom a fault is indicated.

integer procedure value (x)

is the address of a new
atom whose value is x.
Each time setup is called
a cell is removed from the
free storage list.

integer procedure setup (x)

Note that value (x) and hd (x) are essentially the same
thing.

6. Input—output facilities

integer procedure read list (dv). This procedure reads
an explicit list in from device dv, constructs it and sets
read list equal to its address. The list must be punched
in the form

(list);

where (list) is as defined in Section 2. All atoms must
be explicit integers defined thus

(sign) ::= — | <empty)
(unsignedinteger) : := (digit) | (unsignedinteger) {digit)
(integer) ::= {sign) {unsigned integer)

Editing symbols are ignored. If the data object does
not conform to the above description a fault is indicated.

procedure write list (dv , f , x , n) prints the list (or atom)
x on device dv, the values of atoms being printed in
format f; n is an integer equal to the length of the format.

Each list is started on a new line. If it cannot all be
printed on one line then it will be continued on the next
line. In the interests of clarity each line is not neces-
sarily completely filled. The last symbol on an inter-
mediate line will be a comma and will be one of the
highest-order commas on that line. Each list is ter-
minated by a semicolon. A page width of 70 characters
is assumed.

The nil atom is represented by N for the purposes of
these procedures.

7. Other procedures

The following procedures are also provided for the
manipulation of lists.

replaces the head of the list x
by element y. If x is not a list
a fault is indicated.

procedure set hd (x, y)

115

replaces the tail of the list x
by element y. If x is not a
list or y is not a list or N a
fault is indicated.

procedure set t! (x, y)

The above two procedures could be used to construct
a cyclic list, e.g. set tI (x, x). Such lists are not to be
encouraged. They cannot be represented explicitly in a
finite form and hence cannot be output by procedure
write list.

procedure set value (x, y) changes the value of atom x to y.
If x is not an atom a fault is indicated.

joins list y on to the end of list x,
i.e. it replaces the tail of the last
item of x (which is N) by y.
List x is thus altered.

procedure join (x, y)

integer procedure copy (x) is the address of a new list
which is a complete copy of the
list x apart from its atoms. The
list x is not destroyed.

Note that equal (copy (x), x) is always true but
copy (x) = x is false unless x is an atom.

integer procedure rev (x) is the address of a new list whose
elements are in the reverse order
to x. Sublists of x are, however,
not reversed.

Soifxis(1,(2,3),4) thenrev(x)is(4,(2,3),1)

integer procedure append (x, y) is the address of a new
list similar to that obtained by
join (x, y). List x in this case is
not altered.

8. Storage retrieval

Each time that procedures cons or setup are used a
new cell is taken from the free storage list. It is con-
ceivable that the free storage list would soon be exhausted
unless steps were taken to return unwanted cells to it.

Every cell that is accessible to the program is so
because it can be reached by a sequence of hd and ¢/
operations on one of the integers used for storing list
addresses. When the contents of one of these integers
is changed it may happen that the cell whose address it
formerly contained can no longer be reached by a
sequence of such hd and 1l operations. Such a cell is
inaccessible and is automatically returned to the free
storage list as follows.

From among those integers which the user is going to
use for the storage of list addresses he selects a set which
will be called base lists. They are designated base lists
by the declaration of procedure bases. The body of
bases consists of statements of the form

preserve (X)

where x is a base list. As an example, suppose that x, y

¥202 IMdy 61 U0 3senb Ag 6Z¥06E/E L L/Z/8/81o1e/|ulwoo/wod dno ojwepeoe//:sdiy wolj pepeojumod

KDF9 list processing

and z are designated base lists, then bases will be declared
as follows:

procedure bases;
begin preserve (x); preserve (y); preserve (z) end;

When the free storage list is exhausted storage retrieval
is carried out by procedure #idy, a call of which performs
the following operations. Firstly, bases is called which
calls in procedure preserve with argument equal to the
base lists in turn. preserve changes the link of each cell
that can be reached from its argument in such a way
that the cell is distinguished. In fact it sets

link := — link —3.

Normal cells thus have link > —1, marked cells
have link < —I1. If a cell is encountered whose
link << —1 then it assumes that that cell has already
been reached. After procedure bases has been called all
cells whose links are still > —1 are deemed unwanted
and are returned to the free storage list. Finally the
links of all wanted cells are restored to their original
values. If the free storage list is then found to be still
empty a fault is indicated.

The above description is not complete, for consider
the following situation. Suppose that the statement

x := F (cons (a, 0), cons (b, 0));

is being executed where F is some integer procedure
with two arguments called by value. The two arguments
are then evaluated in order. Suppose that after
cons (a,0) has been evaluated the free storage list is
exhausted. Storage retrieval will be initiated as soon as
cons is called during the evaluation of cons (b, 0). The
cell containing cons (a, 0) which has been left hanging
will then unfortunately be returned to the free storage
list.

This is overcome as follows. A list with identifier
expression is formed. Each time a new cell is obtained
from the store it is added to the list expression. This in
fact means that two cells are necessary. One is the new
cell explicitly required by the user, the other is used to
extend expression and points to (i.e. its item is address
of) the required new cell. The statement

preserve (expression)

is inserted in procedure ridy immediately after the state-
ment which calls in bases. So when storage retrieval
occurs all items formed during the evaluation of expres-
sions are not lost. As soon as the ALGOL expression
is completely evaluated the list expression is set to zero.
To determine the end of the ALGOL expression a
counter (stored in integer cons count and set to zero by
initiate) is increased by one each time a relevant pro-
cedure is entered, and decreased by one on exit. The
increase is arranged to occur before the arguments of
the procedure are evaluated by calling them by name,
and transferring to local variables after the increase. If
after the counter is decreased it is found to be zero then

116

the ALGOL expression is complete, the list expression
is set to zero and the cells of it containing the addresses
of the new cells it was guarding are returned to the free
storage list.

The increase and decrease of the counter are controlled
by procedures ante and post. The general form of a
procedure is thus

(i) call procedure ante

(ii) transfer arguments to local variables
(iii) body of procedure
(iv) call procedure post

It is not in fact essential to do this in the case of
procedures which do not explicitly use new cells and
have only one argument; e.g. kd, tl.

The user is urged to use ante and post in his own
procedures if necessary. The important points to note
are

(i) ante and post must occur in pairs, in that order
(ii) they may be nested
(iii) their use does not prevent all storage retrieval
but only the retrieval of those cells constructed
since the counter was last zero.

After each storage retrieval procedure warning is
entered. This must be provided by the user and may
be used to print a message if desired, e.g. the number of
cells now on the free storage list could be printed; this
number is stored in free cells.

The user should note that if store size is only just
sufficient for his problem then a great deal of time may
be spent in storage retrieval.

9. Diagnostic facilities

Various checks are incorporated in the procedures,
and if one of them fails procedure achtung will be entered.
The procedure prints a message on device fail dev. If
the boolean fail pm is true it will then give a post mortem
of the store apart from cells on the free storage list.
This post mortem takes the form of three columns of
integers, each row being i, item [i], link [i]. Finally the
statement sqr7(—1) is encountered. This terminates the
run and may be used to give such diagnostics as the
operating system allows. For example, using a Whet-
stone compiler (see Duncan, 1962) a retroactive trace
will be produced. The first few items of the trace refer
of course to achtung but the remainder should be useful
in locating the fault. Note that many procedures call
other procedures, e.g. hd calls atom, so the trace should
be interpreted with care

Example: x := cons (hd (y) , 1l (2))
will produce the following (forward) trace

cons
ante
new cell
hd

¥202 IMdy 61 U0 3senb Ag 6Z¥06E/E L L/Z/8/81o1e/|ulwoo/wod dno ojwepeoe//:sdiy wolj pepeojumod

KDF9 list processing

atom
tl
atom
post

10. Incorporation of system

The system consists of a set of declarations and must
therefore be inserted in a block head. In addition the
integer store size must be declared and have a value
assigned to it in an outer block.

Assignment must be made to boolean fail pm and
integer fail dev and the procedure initiate called once
before executing any statements using the system.

The user is advised to declare procedures bases and
warning immediately after the system. Note that all
integers preserved by bases must also be declared in the
same block head.

11. Summary of identifiers

Identifiers used by the system are listed in Table 1.
They must not be used for other purposes.

12. Text of system

The ALGOL text of the system is not reproduced in
this paper, but a copy may be obtained from the author
by anyone interested. This text, which naturally provides
an exact description of the system, should be referred
to for further details regarding points not completely
explained above.

13. Example of use of system

To illustrate the use of the system a program to
demonstrate the tree sort method of sorting will be
described. This method is described by Sussenguth
(1963) and an ALGOL procedure implementing it is
described by Kaupe (1962). The implementation now
to be described is intended to be illustrative rather than
practical.

The numbers to be sorted are stored one per node at
the nodes of a tree as follows. Each node has two
branches leading from it—the left and right branch
(either or both may be missing). Each branch leads to
a sub-tree, the left or right sub-tree. Each node has the
property that all numbers stored in the left sub-tree are
less than the number at the node, which in turn is less
than (or equal to) all numbers stored in the right sub-
tree. This structure may then be added to as follows.
The number to be added is compared with the number
at the root, if the new number is smaller take the left
branch, else the right, and repeat until a node is reached
with an appropriate missing branch. The new number is
then placed at a new node and the branch added to
connect it to the tree.

Having added all the numbers to the tree they are
unpacked by first unpacking the left sub-tree then the
node and finally the right sub-tree. Sub-trees are
unpacked by further applications of the same rule.

117

Table 1
Reserved identifiers
DESCRIBED IN
IDENTIFIER TYPE SECTION
store size integer 4
next cell v 4
free cells . 8
cons count ' 8
expression ' 8
fail dev ' 9
fail pm boolean 9
item integer array 4
link ' ’ 4
write list procedure 6
initiate v 4
achtung ” 9
tidy . 8
ante ' 8
post ' 8
preserve), 8
set tl . 7
set hd ' 7
set value ' 7
Jjoin ' 7
copy integer procedure 7
rev ’ ' 7
new cell ' ' 4
hd v ’ 5
tl ’s ’s 5
cons . ’s 5
value ’ ” 5
setup . . 5
append . ' 7
read list ’ . 6
equal boolean procedure 5
atom v ' 5

In our list scheme the trees and sub-trees are repre-
sented by lists as follows. The first element is a list
representing the left sub-tree (or N if absent), the second
element is an atom whose value equals the number at
the node, and the rest of the list is the right sub-tree.

Numbers are added by the recursive procedure join on
and the tree is unpacked by the recursive procedure print.

The program which follows is self explanatory. The
instruction write list shows the situation when the tree
is complete. Warning messages are produced each time
storage retrieval is initiated, and finally, when a sort is
attempted on more numbers than the store can handle,
the fail routine is entered and a post mortem produced.

The text of the program, data and results are shown in
the Appendix.

Acknowledgement

The author wishes to express his thanks to Imperial
Chemical Industries Limited for permission to publish
this paper.

¥202 IMdy 61 U0 3senb Ag 6Z¥06E/E L L/Z/8/81o1e/|ulwoo/wod dno ojwepeoe//:sdiy wolj pepeojumod

KDF9 list processing

References

CooPER, D. C., and WHITFIELD, H. (1962). “ALP: An Autocode list-processing language,” The Computer Journal, Vol. 5, p. 28.
Duncan, F. C. (1962). “Implementation of ALGOL 60 for the English Electric KDF9,” The Computer Journal, Vol. 5, p. 130.

KAupE, A. F. (1962). Algorithm No. 143. Comm. Assoc. Comp. Mach., Vol. 5, p. 604.

McCarTHY, J. (1960). “Recursive Functions of Symbolic Expressions and their computation by Machine, Part 1,” Comm.

Assoc. Comp. Mach., Vol. 3, p. 184.
NAUR, P. (Editor) (1963). “‘Revised report on the algorithmic language ALGOL 60, The Computer Journal, Vol. 5, p. 349.
SusseNGUTH, E. H. (1963). ““Use of Tree Structures for Processing Files,” Comm. Assoc. Comp. Mach., Vol. 6, p. 272.
WoopwARD, P. M., and JENKINs, D. P. (1961). “Atoms and Lists,” The Computer Journal, Vol. 4, p. 47.

Appendix

Example of use of system

PROGRAM print (¢l (1l (tree)))
Treesort end;
begin integer storesize; open (20); open (10);

integer n, f, tree;
copytext (20, 10, [5 1); storesize := read (20);

begin comment faildev := 10; failpm := true;
f := format ([ndd));
Insert text of system here; initiate; T
procedure warning; n .= read (20);
begin write text (10, [[c] only]); again: tree := cons (0, cons (setup (read (20)), 0));
write (10, f, fre;ce-lls);) for n := n—1 while n)>0 do joinon (read (20),
write text (10, [**cells*available[c]]) tree);
end: - T write text (10, [lcel]);
procedure bases: write list (10, f, tree, 3);
preserve (tree); write text (10, [_[CCH);
print (tree);
procedure joinon (i, tree); n:= read (20);
value i, tree; if 40 then goto again;
integer i, tree; close (10); close (20)
if i {value (hd (¢l (tree))) then end
begin if 4d (tree) =0 then
sethd (tree, cons (0, cons (setup (i), 0))) end
else joinon (i, hd (tree)) s
end else
begin if ¢/ (¢/ (tree)) =0 then ‘ DATA
settl (¢l (tree), cons (0, cons (setup(i), 0)))
else joinon (i, tl (¢l (tree))) Trial*data,
end;
75;
procedure print (tree); 5.

.value tree; 3,47, 43; 73; 86;
integer tree;

if tree=-0 then 20;
begin print (hd (tree)); 36; 96; 47; 36; 61; 46; 98; 63; 71; 62; 33;
write (10, f, value (hd (1] (tree)))); 26; 16; 80; 45; 60; 11; 14; 10; 95;

118

¥202 IMdy 61 U0 3senb Ag 6Z¥06E/E L L/Z/8/81o1e/|ulwoo/wod dno ojwepeoe//:sdiy wolj pepeojumod

KDF9 list processing

30;

97; 74; 24; 67; 62; 42; 81; 14; 57, 20; 42; 53;
32;37;32;27; 7;36; 7;51;24;51;79; 89;
73; 16; 76; 62; 27, 66;

0;
—_—
RESULTS

Treesort
Trial data

(N, 3,(N, 43), 47,N, 73, N, 86);
3 43 47 73 86

only 16 cells available

((((((N, 10), 11, N, 14), 16), 26), 33), 36,
((N, 36, (N, 45), 46), 47, (N, 60), 61, (N, 62), 63, N,

71, N, 80, N, 95), 96, N, 98);

1011141626 33 36 36 45 46 47 60 61 62 63 71 80 95 96 98

only 61 cells available

List fail No more cells available
List post mortem
1 67 —1
2 54 70
3 1 0
4 24 —1
5 2 74
6 4 8
7 74 —1
8 5 3
9 7 72
10 97 —1
etc.

Book Reviews

The Impact of Computers on Accounting, by T. W. MCRAE,
1964; 304 pages. (London and New York: John Wiley
and Sons Ltd., 42s.)

The avowed object of this book is to interest accountants in

the things that can be done with computers.

In early chapters Mr. McRae seeks to outline the basic
ideas involved in computers themselves and in their appli-
cations. He then passes on to consider Operational Research,
the Audit question, and the economics of E.D.P. The rest
of the book, the more satisfactory part, is concerned with the
impact of E.D.P. on management, particularly the accoun-
tants’ share in management, the problem of education, and
the future demands on the accountant.

The book seeks to cover a wide, perhaps too wide, field,
and could have a better title. Indeed at the end of a chapter
the author uses the words—‘“This chapter is concerned with
the impact of computers on accounting.” The overall target
is more probably management, particularly as exercised or
influenced by the accountant.

The case for an increased appreciation of the computer is
well put, and the extent of current possibilities, on the whole,
are well described. On the other hand, despite the obvious
efforts to avoid it, the descriptions and in some cases opinions
are oriented towards one manufacturer’s ideas.

One is surprised to find that punched cards are the sole
means of feeding a computer, and paper tape is condemned
as slow and relegated to applications where it can arise as a
by-product. The needs for random access are stressed and
the author doubts the efficiency of exception reporting as a
means of minimizing this need.

There is a good attempt at a classified Bibliography, but
the Glossary and Index are weak.

Notwithstanding these criticisms the accountant with the
patience to follow the arguments may well feel that the
author makes his case for the profession to think anew
regarding its own basis of training, its system of qualification,

119

and indeed its basic philosophy. He may be less inclined to
accept the solutions proposed.
E. C. LAy

Data Acquisition and Processing in Biology and Medicine—
Volume 3, edited by K. ENsLEIN, 1964; 344 pages.
(Oxford: Pergamon Press Ltd., 100s.)

This volume reports the proceedings of the third Rochester
Conference. The subjects covered include diagnostic routines,
multivariate analysis as used in diagnosis, literature retrieval
problems, machine analysis of heart sounds, limitations of
various data-acquisition and analysis methods, and a rather
thorough treatment of statistical computer methods for
diagnosis. The emphasis is mostly on clinical medicine.

There are several excellent papers on the diagnosis of
disease by using what is essentially classificatory statistical
techniques and information-retrieval methods. There is
more than one claim that computer diagnosis can be made
more reliable than human diagnosis, especially in fields
where specialists do not encounter very many cases. As one
contributor puts it: “In actual usage, the computer has
proved a wise colleague to the pediatric cardiologist, and a
superior consultant to members of a general hospital staff
specifically interested in congenital heart disease.”

The book reflects the state of mathematical infiltration
into medicine. As yet statistics has made the greatest contri-
bution to medicine, and applied mathematicians have still
to make any great contribution via model making and
analysis. This is coming in, but this volume, like its pre-
decessors, does not find much space for it.)

This is a worthwhile volume, and I can recommend it.
The papers on information retrieval and maintenance of case
histories can be profitably read by anyone studying computer
documentation in general.

ANDREW YOUNG

¥202 IMdy 61 U0 3senb Ag 6Z¥06E/E L L/Z/8/81o1e/|ulwoo/wod dno ojwepeoe//:sdiy wolj pepeojumod

