Direct methods for the solution of finite-difference approximations
to separable partial differential equations

By M. R. Osborne*

Methods suggested by Bickleyand McNamee are reviewed. Theuse of their semi-rational technique
for solving problems in non-rectangular regions is illustrated, and an application to the solution
of eigenvalue problems is explained and exemplified.

1. Introduction

This paper is concerned with the methods suggested by
Bickley and McNamee (1960) for the solution of finite-
difference approximations to separable elliptic partial
differential equations. These methods have the advan-
tage of being direct, and they bypass the problems of
organization and storage usually associated with direct
methods. In the author’s opinion they provide the best
numerical method for problems for which they are
suitable. In particular they do not require the matrix of
the difference equations (this will be referred to later as
the big matrix) to be definite, so that they can be applied
to solve forced-vibration and eigenvalue problems.

The methods of Bickley and McNamee are considered
in Section 3, but first their formalism is introduced
(Section 2) by considering a particular problem. In
Section 4 the semi-rational method is used to derive
expressions for influence matrices which show the effect
of the boundary values on the solution of the difference
equation. In Section 5 use is made of the results of
Section 4 to solve more general boundary-value problems.
In Section 6 an application to an eigenvalue problem is
considered, and some numerical results are presented.

There are two possible ways in which boundary-value
problems in more general regions can be tackled. If
the region can be subdivided into rectangles then very
efficient and well-conditioned computational schemes
are possible. This is exemplified here for a mixed
boundary-value problem. This provides perhaps the
simplest application of the influence matrices. An
application to the solution of the Dirichlet problem for
Laplace’s equation in a T-shaped region is indicated in
Bickley and McNamee (1960). In Wilson (1962) similar
calculations are given (for example for the Dirichlet
problem for Laplace’s equation in a rectangular annulus).
Wilson’s method is essentially the irrational method of
Bickley and McNamee. Both methods are suitable only
for equations with constant coefficients. Similar results
appear also to have been obtained by G. N. Polozhii in
the Soviet Union. The author is indebted to Mr. G. J.
Tee of Lancaster University for this reference. Mr. Tee
is engaged in preparing a translation of some of
Polozhii’s work.

The second possibility for handling a more general
region is to embed it in a rectangle. There is con-
siderable freedom in the way in which the problem can

be defined in the extended region, and it is by no means
obvious how to proceed to obtain a computational
procedure which is both efficient and well conditioned.
This difficulty is illustrated in Section 5 by considering
a triangular region embedded in a rectangle, but no
satisfactory solution is presented.

To provide a basis for assessing the efficiency of the
procedures discussed here they are compared with the
corresponding optimized line-overrelaxation procedures.
The asymptotic rate of convergence for Laplace’s equa-
tion in a square (Varga, 1962, p. 204) is used to estimate
the number of iterations required for the overrelaxation
computation.

It is stressed that the aim of this paper is to show how
certain sets of algebraic equations, which occur in the
solution by finite-difference methods of a class of partial
differential equations, can be solved efficiently by the
direct methods of Bickley and McNamee. No attempt
has been made to estimate the accuracy of the results
obtained as solutions of the partial differential equations.

The following notation is used:

pi(Q) for the ith row of the matrix Q,
k;(Q) for the ith column of the matrix @, and
e; for the vector with 1 in the jth place and zeros
elsewhere.

2. The formalism of Bickley and McNamee

The effectiveness of the techniques developed by
Bickley and McNamee is largely due to the convenient
and elegant formalism they use for representing the
difference equation. In this section this formalism is
developed for the standard five-point finite-difference
approximation to the partial differential equation

2 2
L SIS @

w2 T ror T2
subject to the boundary conditions

(i) ¢ regular, r =0,
(i) ¢(r, 0) = a(r)

(i) o (1,2 =0, 22)
d
(iv) g 1) = 0.
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Partial differential equations

This problem (with / = 2, and f(r, z) = 0) is the subject
of the numerical experiments reported in Section 6.

To set up the finite-difference equations the region
0<r<1,0<z<! is covered by families of lines
parallel to the r and z axes respectively. The convention
is adopted that lines parallel to the z axis correspond to
constant values of r with

ri= (i — Dh, h=1/(m— 1),

and that lines parallel to the r axis correspond to constant
values of z with

i=1,... m;

zi=1k, i=0,1,...,n;, k=In.

For any function W defined on the mesh points, and for
any values of i and j, the value W(r;, z;) is written W;;.
The difference approximation is considered first on
the line z =z;, 2<j< n— 1. There are three cases
to consider. The appropriate difference equations are

given by
(i) r = ry(=0),
dh=(¢y; — 1) +kHb1g—1) — 215 + 1G5+ 1) = fis-
2.3)
) r=r,2<i<m—1,
h=H(1 — 12G—1)d—1); — 2
+ (1 412G — D)+ 1y}
+hk~Hbig-1y — 2¢5 + i} =f- (24)
@iii) r =r,,
h—2{2¢(m—1)j - 2¢)mj}
+ k"2 bmi—1) = 20m; + Pmii+ 10} =Sy 2.5)

By introducing the vectors ¢; whose components are

¢, i=1,..., m, the equations (2.3) — (2.5) are com-
bined to give
Ad; + kb —2¢; + ;. 1} =f (2.6)
where A is the (m X m) matrix
—4 4
-2 3
h—2 3 =2 £
[ ............. N R

Equation (2.6) holds for all lines z =z, j=1,
2, ..., n provided that for ¢, is substituted a vector a
evaluated from the boundary condition ¢(r, 0) = a(r),
and provided that ¢,_, is substituted for ¢, ;. That
the latter substitution is appropriate follows from the

d
boundary condition b_t (r,1)=0.

It will be seen that equation (2.6) consists of an opera-
tion 4 independent of j on each of the vectors ¢;, plus
an operation which combines together, ¢;_;, ¢;, ¢, .
If ®@* is written for the (m X n) matrix whose ith column

* Note that (®);; = ¢;; so that the notation introduced at the

beginping of this section is compatible with the usual matrix
notation.
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is ¢;, then the equations (2.6) for j =1, 2. . . ., n can be
combined to give

AP + ®B =F — h~2[a|0] (2.8)
where B is the (n X n) matrix
-2 1
1 -2 1
e
[ 1 =2 2
1 =2]. 29

Equation (2.8) is in the form considered by Bickley
and McNamee. The standard finite-difference approxi-
mation (whereby derivatives are replaced by the first
terms of their central difference or averaged central
difference representations) to a separable partial differ-
ential equation can always be put into this form provided
appropriate boundary conditions are given on a rectangle
whose sides are parallel to axes of the separable variables.
For second-order equations, for example, boundary
conditions of the form J¢ + K d¢/dn can be prescribed
provided J and K are constant on any one side. The
separation of operations on the rows and columns of
the solution matrix in equation (2.8) provides an elegant
analogue to the separability of the original partial
differential equation.

3. On the methods suggested by Bickley and McNamee

Bickley and McNamee give three methods for solving
the equation

AX + XB =F. 3.1

These they designate as the irrational, semi-rational, and
rational methods respectively (pages 99-109).

The semi-rational method appears to be the most
generally useful of the three. It requires a knowledge
of the similarity normal form of either 4 or B. Let us
assume that that of B is known. Then

B= TAT-'.

Assume first that A is diagonal.
Equation (3.1) gives

AXT + XTA = FT.

3.2)
Substituting for B in

Let X = XT,F = FT then
AX + XA =F (3.3)
so that _ _
(A + }‘il)Ki(X) = Ki(F)
i=1,2,...,n (3.4

Each column of X can be found from equation (3.4) by
solving a set of linear equations. The solution of
equation (3.1) is then completed by a matrix multi-
plication.

Note that when 4 is a band matrix, as in equation (2.8),
the matrix multiplications necessary to calculate ¥ and ®
can be a large part of the computation. However, in
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Partial differential equations

many cases these can be avoided (see, for example,
equations (4.3) and (4.6) in the next section). For this
reason the setting up of these transformation matrices is
included in the estimates of the work involved in the
computation; however, the matrix multiplications are not.

If A is not diagonal, then at least one of the eigenvalues
of B is associated with a principal vector of grade 2.
Assume that A; is a twice repeated eigenvalue, and that
(B — A) has rank (n — 1). Then A will have the form

In this case the ith column of X satisfies equation (3.4),
while the (i 4+ 1)th column satisfies

(4 + )‘il)"i+1(1?) + Ki(i) = Ki+l(f)- (3.5)

The solution of this equation is readily found once

k;(X) has been computed.

The semi-rational method has very considerable
advantages over direct methods which involve factoriza-
tion of what Bickley and McNamee call ‘“‘the big
matrix,”* for it bypasses all the very considerable
problems of organization and storage which these
methods encounter. Again it is in general better than
the over-relaxation iterative techniques currently in use
even when the optimum values of the over-relaxation
parameters are known (for the problems considered here
these can be readily calculated, see Osborne (1963)).
This is so even if it is necessary to solve the eigenvalue
problem for either 4 or B to compute the similarity
normal form.

To see why this should be, note that the calculation

of X involves about the same amount of work as one
sweep through the mesh in a typical line iteration.
Therefore, unless a similarity normal form has to be
calculated, the semi-rational method must be vastly
superior. If the orders of A and B are similar then, for
problems of the type considered in the previous section,
the calculation of all the eigenvalues and eigenvectors of
B involves of the order of 10n solutions of sets of linear
equations with matrix Af, or of the order of 10 sweeps
of a typical line iteration by columns.

This number of sweeps would be sufficient for the
convergence of a line iteration only for very small
problems.

Equation (2.8) is clearly one which should be solved
using the semi-rational method for here the eigenvalue
problem for the matrix B (given by equation (2.9)) is
readily solved explicitly in terms of trigonometric
functions.

* This is of order mn. It is the matrix of the difference equations
when the ¢;; are ordered as the components of a vector.

t The eigenvalues of tridiagonal matrices can be found very
efficiently. Here the principal minors form a Sturm sequence.
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The irrational method requires a knowledge of the
similarity normal forms of both 4 and B. Assume that

A= SMS-! (3.6)

where M is diagonal. Then equation (3.4) can be
written

(M + \Dk,(S—'X) = x,(S~'F). (3.7

As the matrix on the left-hand side is diagonal the
solution of equation (3.7) is trivial. The solution of
equation (3.1) can now be obtained by two matrix
multiplications.

In the applications envisaged in this paper both
similarity normal forms are available only when the
partial differential equation has constant coefficients.
In all other cases the semi-rational method is to be
preferred. It is interesting that the semi-rational method
is very nearly competitive with the irrational method,
even in the example most favourable to the latter—the
case of Laplace’s equation in a rectangle with Dirichlet
boundary conditions. Here a count of multiplications
(counting division as two multiplications) for computa-
tional schemes that were probably pretty efficient for
both methods found a factor of 5/7 in favour of the
irrational method.

The rational method requires a knowledge of the
characteristic equation of either 4 or B. For tridiagonal
A and B this can be found using the obvious three-term
recurrence. The rational method is most easily derived
by making use of the identity

r—1
A'X = X(—By + 3 (—1)A~—'FB.  (3.8)
i=0

If the characteristic equation for A4 is $(4) = O then, by
equation (3.8),

0 = Y(4)X = XY(—B) + R(4, F, B).  (3.9)

Equation (3.9) is a set of linear equations for the rows
of X. R has been written as a shorthand for the terms
independent of X.

The author does not know of any application of the
rational method other than the one given by Bickley and
McNamee. The rational method does not appear to
offer any particular advantages in economy over the
other two methods. It may be numerically unstable
when the big matrix is not definite.

4. Dependence of the solution on the boundary conditions

In this section expressions are derived which show
explicitly the dependence of the solution of equation (2.8)
on the vector a of boundary values given on z = 0.
The semi-rational method is used to solve equation (2.8).

For convenience the solution matrix is broken into

two parts @, and ®, where

4.2)

and
A¢2 —]L ¢2B = — h‘z[aIO].
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As ®, is independent of a attention is now concentrated
on ®,. In equation (4.2) only the first column of the
right-hand side is non zero. However, the analysis is
no more complicated if it is the rth column which is non
zero. In this slightly more general case it is the depen-
dence of the solution on the rth column of the right-hand
side that is computed, and the equation to be solved
now takes the form (omitting the —A—2 which is relevant
only to the boundary condition)

A®, + &,B = [0]a,|0]. (4.22)

There are two possibilities for the calculation of @,
depending on which of the matrices A or B is resolved
into its similarity normal form. Both cases will be
treated in detail.

(i) B=TAT-'.
In this case
Ki(F) = x([0]a,|0]T) = Ta,.
The semi-rational method gives
k(@) =1[.., T4+ XD a,...Jc(T"") (4.4)

= [£ @9 TAA + AD) e,

= Qla,. 4.5)

Equation (4.5) shows explicitly the dependence of the
solution on the boundary values (or the right-hand side).
The matrices Q) will be called influence matrices.

(i) 4 = SMS-1.

Here

(4.3)

p:i(F) = p/(S~1[0]a,|0])

= (p(S™Y.a)el. (4.6)
The semi-rational method gives
o sfis e T ] o
Whence
@) = [ £ @+ p5 (5],
= Qla,. 4.8)

Comparing the different forms of Q7 given by equa-
tions (4.5) and (4.8) it is seen that the former expression
requires the calculation of inverse matrices while the
latter requires only single elements of the inverses.
Each of these elements can be found from the solution
of a single set of linear equations. The calculation from
equation (4.5) requires the solution of O(n?) sets of linear
equations, and this is of the same order of magnitude as
the number required for the convergence of an optimized
line iteration.

Methods for the solution of finite-difference approxi-
mations to elliptic partial differential equations which
make use of influence matrices (or matrices derived from
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them) appear to be successful only when the influence
matrices are well conditioned. This will be illustrated
in the next section. This ill-conditioning of the influence
matrices derives from the fact that the influence on the
solution of an elliptic difference equation of a disturbance
at an isolated point of the mesh falls away rapidly with
distance from the point.

This section concludes with a discussion of the condi-
tioning of the influence matrices in a special case. From
equation (4.8) it is seen that the influence matrices have
as eigenvectors the «;(S), and as eigenvalues (B + wil) ;!
i=1,2,...,m In many applications a measure of
the condition of @’ is provided by the ratio of its eigen-
value of greatest to that of least modulus. This ratio
will be called the condition number. It is readily calcu-
lated for the special case of finite-difference approxima-
tion to Laplace’s equation in a rectangle with Dirichlet
type boundary conditions. If, for simplicity, it is
assumed that 4 = k then

sinh (n — s)o; sinh ro;
- - r
sinh o; sinh no;

— (B + pd)]; =

sinh so; sinh (n — r)o
~  sinh o; sinh no;

‘r>s (4.9)

where 2 — h?u; = 2 + 4 sin? im/2n = 2 cosh a;.

From equation (4.9) it follows (for example) that the
condition number of Q) is approximately 6 for large
values of n while that for Q% is O(e*/n) for a fixed value
of o between 1 and 2. Thus the conditioning of Q} is
excellent while that of Q) is catastrophically bad.

5. Application to more general boundary-value problems

The formulae developed in Section 4 can be used to
extend the range of problems which can be solved by
the methods suggested by Bickley and McNamee. First
the problem discussed in Section 2 is considered with the
mixed boundary condition

¢
Tz(r’ =1, 0<r<R (5.1)

$(r,00=0, R<r<1

It is assumed that the other boundary conditions are
as before, and that R = (1 + Dhis a mesh point. The
difference approximation to this problem is solved by
finding a vector of boundary values ¢, having the
property that the solution for it (which is readily obtained
by the methods of Section 3) also satisfies the standard
finite-difference approximation to the mixed condition
(5.1). The results of Section 4 are used in finding ¢.

Let the vector ¢® be made up of the first # compo-
nents of ¢, and let ¢~ stand for the vector consisting
of the remaining (m — t) components. Then the finite-
difference approximation to equation (5.1) can be
written

¢?, = ¢{” + 2ke®

¢(0m—t) =0 (52)
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where e is the vector each component of whichis 1. The
column ¢_; can be found by applying the difference
equation on the line z = 0. This gives

b1 = — k?Ady + 2¢ — b, + k. (5.3)

Let the leading ¢ X ¢ principal submatrix of A4 be
denoted by A®, then, combining equations (5.2) and
(5.3), the boundary conditions (5.2) become

260 — 210 — K2AD)$Y = kA — 2ke®
dim—0 = 0. 5.4

The vector ¢ can be eliminated from equation (5.4) by
using equations (4.1), (4.2), and (4.8). These give

b = — h~2Q1d, + «(P)) (5.5)

so that the appropriate vector of boundary values can be
found by solving the set of linear equations

[—2h72Q1® — 210 + K24®)(
= kM — 2ke® — 2i\(P)). (5.6)

Once equation (5.6) has been solved for ¢ the
solution of the difference equation can readily be com-
pleted. The solution of a related problem is described
in Section 6.

The second problem considered is that of solving
equation (2.1) subject to the boundary conditions

(i) ¢(0, z) regular 1
(ii) %‘é —0, z=1

(i) @(r, z2) = a(r, z), r=z|l. J

One possibility for solving this problem is to embed the
triangular region specified in equation (5.7) in the
rectangle 0 < r < 1,0 < z< I. To apply the methods
of Section 3 boundary conditions must be given on the
sides r = 1 and z = I, and the right-hand side of the
differential equation must be defined in z/I<r < 1.
These conditions must be adjusted so that the condition
(5.7) (ii1) is satisfied.

If there are the same number of mesh points on each
line r = constant and z = constant then each inter-
section of a grid line with the line r = z/I occurs at a
mesh point. In this case there are the same number of
mesh points on r = z/I as there are on each of the new
boundary lines. As values of the right-hand side in the
extended region are also disposable there are many more
variables to be adjusted than there are conditions to be
satisfied ((5.7) (iii)) becomes

(5.7

P ,=a(ri,2), j=1,...,n—1).

One may proceed by arbitrarily fixing all but n — 1 of
the disposable quantities and then adjusting these so that
(5.7) (iii) is satisfied. However, not all such methods are
satisfactory. For example if the (» — 1) quantities to
be adjusted are the values on one of the new boundaries
then it is not difficult to derive the equations which these
values must satisfy, and the cost in terms of the number

154

of operations involved is the same as that for setting up
one of the QI. However, the matrix of this set of
equations rapidly becomes extremely ill-conditioned as n
is increased. For example a program written to imple-
ment this procedure on the Atlas computer worked
successfully for n = 4, but for n = 10 the components
of the vector of boundary values were O(10'2) and the
solution was nearly meaningless.

Another possibility is based on Tee’s description of
Polozhii’s work. In this case the quantities to be
adjusted are the right-hand side values on r = z/l.
Assume that all other disposable quantities can be set
equal to zero, then, using the influence matrices, the
conditions to be satisfied are

n—1
a(rj1 15 Zj) :kEifke];lQ‘;ekf’-l’ j = ls v — 1

n—1

:kglfk(Q’;)(j+ D+ 1) (5.8)
where f, is the right-hand side value at the point
rr+1, Zx.  The set of equations for the f; has the possi-
bility of being better conditioned. However, this
procedure has the serious disadvantage that the setting up
of the matrix of equation (5.8) requires (» — 1)? triangu-
lations and forward and back substitutions. This is an
amount of computation comparable with that required
to solve the problem by an optimized overrelaxation
technique.

6. An eigenvalue problem

The procedure described in the previous section for
the solution of the mixed boundary-value problem fails:

(a) if any of the matrices which have to be inverted in
the calculation of @} are singular, or
(b) if the matrix

H= —2n2Q\® — 2] 4 k24®
is singular.

In case (@) the matrix of the difference equation for
the problem with a vector of boundary values ¢, pre-
scribed is singular. In case (b), however, it is the matrix
of the difference equation for the problem with the mixed
boundary condition which is singular, and a solution of
the homogeneous mixed boundary-value problem can
readily be constructed by using the Bickley-McNamee
technique to solve the difference equation for a vector
of boundary values ¢, where ¢{" is a non-trivial solution
of

Hp® =0
B9 = 0.

Use can be made of the above observation to solve the
eigenvalue problem associated with equation (2.1)
92 19 02
ar—er" =

r or

and

6.1)
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subject to a homogeneous mixed boundary condition on
z = 0. The term on the right-hand side of equation (6.1)
can readily be incorporated into the difference equation.
In particular the forms for the influence matrices become

o; 221 (TT (A + (o + 4D~

= ,z_‘.ll (B + (o + p);' k(S)pi(S™1 (6.2)
while the equation for determining the vector of boundary
values ¢, appropriate to the inhomogeneous mixed
boundary conditions (5.1) becomes

[—2h-2010 — (2 — k20)[O + k2AD]$P = — 2ke®
(6.3)

where Q} is defined by setting r = s = 1 in equation (6.2).
The eigenvalues can now be characterized as the values
of o for which the matrix

H(o) = — 212010 — (2 — K20)I® + k240 (6.4)

is singular. In equation (6.4) H(o) is only a (¢ X 1)
matrix so that this characterization of the eigenvalues
has the advantage of compactness. However, equa-
tion (6.4) is nonlinear in the eigenvalue parameter.

The numerical solution of eigenvalue problems in
which the eigenvalue parameter appears nonlinearly has
been considered by Osborne and Michaelson (1964), and
by the author (1964). In Osborne and Michaelson is
derived the iteration

H(o)v;y = xi/(xi)pi

dH
H(o)x; = %(ai)vi+l

. (viy 1)p;+,
(xi4 1)p.'+ 1

where p; is the index of the component of maximum
modulus in x;. The author (1964) has shown that this
iteration is of second order, and that this is true also of
the iteration

6.5

Oit+1 = 0;

d
H(Ui)x,'+1 = 'dLO{_(O'i)xi/(xi)m

Oir1 = 0; — (X)pi o /(Xit Dpiyre (6.6)
In equations (6.5) and (6.6) dH/do is given by
dH doio®
T g2y — op-2
To kO — 2h o
— IO 4+ 2(h> 3 (B + (o + p)Diy?
i=1
ki(S)pi (S~ (6.7)

These two iterations applied o H(o) are compared in
Table 6.1. It will be seen that the number of iterations
required is very similar in each case, so that it would
seem that (6.6) is to be preferred as it requires only one
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forward and back substitution per step. In every case
the iteration is terminated when |o;., — ;| < 10~S.
With the exception of the case discussed in the next
paragraph, the location of the eigenvalues presented no
great difficulty. The values of o, were obtained from
preliminary calculations made with slightly different
values of m, n, and ¢ to those given in Table 6.1. In
these preliminary calculations the starting values were
found by interpolating between the known eigenvalues
of the separable problems with the boundary conditions
é(r, 0) =0 and d3¢4/dz(r, 0) = 0. This technique was
successful for all but the smallest eigenvalues, and for
these it was necessary to try several different values of ay.
However, this was perfectly feasible as the largest matrix
H considered was only 10 x 10 (and in this case the big
matrix was 480 x 480). This clearly demonstrates the
compactness of our method.

Difficulty is to be expected if o at any stage comes
close to making any of the matrices [B + (o + u)I]
singular. If this happens then an eigenvalue of the
mixed boundary problem is close to an eigenvalue of the
problem with ¢, = 0. This difficulty was encountered
in applying the iteration (6.5) both with m = 10, ¢t = 3,
and 6, =0:6, and m =16, t =5 0 =0-6. In the
first case after 10 iterations the iteration converged to
o ~ 41, and in the second case after 13 iterations it
converged to o ~ 28. In these cases the iteration (6.6)
was used with the initial value of o = 0-605 and it con-
verged in the first case after 5 iterations to o = 0-60964,
and in the second case after 4 iterations to o = 0-60891.
In both cases o = 0:6167 is an eigenvalue of the problem
for the boundary condition ¢, = 0. In all cases it was
observed that the ultimate convergence to an eigenvalue o
was from above (so that the final corrections were
negative), so that starting the iterations below the
desired value of o can be expected to aggravate the
difficulties inherent in there being a close root of the
problem with ¢pg = 0.

Table 6.1
Summary of numerical results

Mesh n = 30, m = 10

ITERATION ITERATION

t oo o (6.5) (6.6)
3 5:5 5-4724 5 5
3 15 14-987 4 4
6 0-52 0-54805 5 3
6 5 4-8547 5 5
6 12-5 12-581 3 4

Mesh n = 30, m = 16

ITERATION ITERATION

t 0o o (6.5) (6.6)
5 5:5 5-4653 5 6
5 15 15-008 3 4

10 0-52 0-54501 5 4

10 5 4-8285 5 5

10 12-5 12-545 3 4
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Mr. Sidney Michaelson for drawing his attention to some tion (4.8)) were pointed out to the author by Mr. Sidney

of the extensions of the Bickley-McNamee techniques Michaelson.
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Book Review
Integration of Equations of Parabolic Type by the Method of alternating-direction methods). There are also sections on
Nets, by V. K. SAUL’YEvV, 1964; 346 pages. (Oxford: iterative methods of second and higher degrees (a method of
Pergamon Press Ltd., 80s.) nth degree being one in which the evaluation of the mth
approximation u(™ to the solution requires knowledge of
This useful book is essentially a practical guide to the um=10_ym=2) - g m-m) Questions of error, convergence,
numerical solution of parabolic equations, and incidentally amount of computation and computer storage space required
of elliptic equations also, by finite-difference methods. The are discussed fully.
first part of the book, accounting for rather more than half There are many references, particularly in Part I, to papers
its length, is devoted to the finite-difference approximation dealing more fully with the theoretical background to some
of parabolic equations; that is, to the replacement of a para- of the methods. Many of these references are, as might be
bolic equation by a system of algebraic equations. Systems expected, to Russian sources, but several of the more
of explicit and mixed types are derived, and while the important Western works have been added to this translation.
emphasis is naturally on uniform nets, the non-uniform net Part I covers its subject-matter admirably, and if Part II
is also considered, as is the net with fictitious nodes (to deal is not quite up to date, this is perhaps understandable in a
with irregular boundaries). Most of the formulae concern survey of a subject which is still developing rapidly. The
problems with one or two space variables, but the three- reader might consult R. S. VARGA, Matrix Iterative Analysis
dimensional case is discussed; indeed most situations of (Prentice-Hall, 1962) for a more complete account. The
common practical occurrence are covered. There is a section translation is generally very good; seldom does the style
on equations of order greater than two, and one on nonlinear remind the reader that it is a translation. The title of the
equations. Many contributions of the author and his asso- book might be misleading, in that “method of nets” will be
ciates appear in this part of the book; some will probably a term unfamiliar to many people, and there may be a sus-
be new to Western readers. The stability of all formulae is picion that a basically new method is being proposed. The
considered, and the truncation error is examined at all author’s preference to restrict the term ‘“method of finite
relevant stages. differences” to the corresponding method for ordinary
Part II is concerned with the solution of the systems of differential equations is difficult to understand, and hardly
algebraic equations derived in Part I. Since explicit formulae likely to find general acceptance.
are solved trivially, the methods discussed are those for The author has not set out to make his book completely
solving an implicit system; in the important two-dimensional comprehensive. He mentions topics which are not covered;
case they are essentially methods for solving, at each interval they include problems with general boundary conditions and
of time, the system arising from an elliptic equation. Direct problems with moving boundaries. He says ‘“The present
methods are dismissed early in the discussion on the ground book is designed for a wide class of readers, having direct
that they usually demand too much arithmetic. A com- or indirect contact with the numerical solution of parabolic
parison of various iterative methods therefore dominates this and elliptic net equations (particularly heat conduction and
part of the book. There are accounts of the Jacobi and Laplace’s equation).” The reader who is often confronted
Gauss-Seidel methods, successive over-relaxation, variational with such problems will be very grateful for this volume,
methods (including the method of steepest descent and the which provides the desired information with all the necessary
method of conjugate gradients), methods using Chebyshev warnings.
polynomials, and methods using block iteration (including C. W. CLENsSHAW
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