A computer-oriented description of the

Peaceman-Rachford ADI method

By W. A. Murray* and M. S. Lynnt

The Peaceman-Rachford ADI technique is a well-known method for solving, say, large-scale
sets of linear equations arising out of the numerical solution by difference methods of second-
order elliptic and parabolic partial differential equations. The present paper demonstrates how
the algorithm can be conveniently arranged for computational purposes, and analyses the
problems concerning the use of serial-access auxiliary storage equipment.

1. Introduction

This paper is to a large extent expository, and is
mainly concerned with demonstrating how the Peaceman—
Rachford alternating direction implicit method (ADI)
can be conveniently arranged into a form which is in
general more suitable for computer programming pur-
poses than the mathematical statement of the algorithm.
The Peaceman-Rachford (1955) ADI method is a well-
known iterative technique for solving large-scale sets of
linear equations such as those arising, for example, in
the numerical solution by difference methods of elliptic
and parabolic partial differential equations [see, for
example, Varga (1962), Birkhoff, Varga and Young
(1962), Wachspress (1963)].

The derivation of the problems we shall consider is
outlined in Section 2. We confine our attention to a
“model problem”, namely to the solution of the sets of
equations arising out of a difference-method solution of
the second-order linear elliptic equation (2.1) in two
space dimensions, defined on a rectangle, with Dirichlet
boundary conditions on the perimeter. A word of
explanation is here in order: the analysis we present is
by no means restricted in principle to such specialized
problems—thus, for example, the techniques may be
readily extended to non-rectangular regions, to higher-
order problems with more general boundary conditions,
to non-uniform grids and, with a corresponding increase
in complexity of the algorithm and of its exposition, to a
greater number of space dimensions. However, the
ideas we wish to exhibit are, we feel, sufficiently well
illustrated by the relatively simple model problem.

The Peaceman-Rachford method is defined in
Section 3. The difficulty that arises, and which prin-
cipally motivates this paper, is that the statement (3.1)
and (3.2) of the algorithm, while convenient from the
point of view of mathematical analysis of such con-
siderations as convergence properties, turns out to be
somewhat inconvenient for the purpose of programming
the method for a computer, in particular when the size
of the problem is so large that all the relevant data
cannot be contained within the limits of the high-speed
memory, and the use of auxiliary storage becomes
necessary.

This discussion is mainly oriented towards serial-access
auxiliary storage devices (e.g. magnetic tapes), although
similar considerations apply (see Section 5) to random-
access devices (e.g. discs). In Section 4 it is shown how
the method can be conveniently re-arranged into a form
amenable to the use of serial-access equipment, such that
operations in “alternating directions”, referred to in the
name of this class of methods, can in fact be replaced
by mathematically equivalent operations in one direction
only. This, incidentally, removes a misconception that
sometimes seems to arise, namely that ADI methods are
not suitable for problems so large as to necessitate
auxiliary storage.

Finally in Section 5 we indicate, in the context of
magnetic-tape auxiliary storage, how this re-arrange-
ment of the algorithm can be efficiently implemented
for a large variety of computer configurations. Since
the latter clearly vary considerably in detail, this section
is necessarily non-specific and can only exemplify certain
general principles.

2. Derivation and properties of equations

In this paper we shall exemplify the ideas we are
presenting by considering the systems of linear algebraic
equations derived in the numerical solution by difference
methods of the linear, second-order, self-adjoint partial
differential equation

— 2T 2| = 2 e Y
am ’yb_x b—);Pz ’yby

+ o(x, YU = ¢(x,3), (x,»)eR, (2.1)

where R is the interior of the rectangle formed by the
lines x =a,b (a <b), y = «, B (« < B); together with
Dirichlet boundary conditions of the form

U=)/(x’ }’), (xy J’)EF = R - R5 (22)
where R is the closure of R.

In addition to whatever regularity conditions are
necessary to ensure the existence and uniqueness of a
solution to (2.1) and (2.2), we necessarily assume that

pi(x,») >0(@(=1,2); o(x,y) > 0; (x,yeR. (2.3)

* Mathematics Division, National Physical Laboratory, Teddington, Mddx.
t Now at the IBM Systems Research and Development Center, Kirkeby Center, 10889 Wilshire Boulevard, Los Angeles 24, California.

20z Iudy 61 U0 1sanB AQ /G06€/991/2/8/3I0N1E/|UlWOD/W0d dNo"olWwapese)/:sdRy WOI) POPEOJUMOQ

Peaceman—Rachford method

In the numerical solution of this problem, we cover R
by a uniform grid, R(h, k), of mesh lines:

x;=a+ih, i=0()n+ 1%

¥y = a4 jk, j=0()m + 1t 2.4)

where b—a=@m+1Dh, B—oa=(m+4 Dk. (2.5)
Let

u; = Ux,y), i=0Dn+1, j=00Dm+1 (2.6)

and define difference operators

H (approximating the operator

) Q .
— D—xliplb_)—cil + 3oin (2~1))

and V (approximating the operator — i[pzbl] + 50)

oy v
by
Hu;j = — hju;_y,; + Hyuy; 2.7
— hisq jUit,j
R ,i=1(Dn,j=11)m
Vujj = — v ;-4 + Vi /
— Vi1t (2.8)
where
hij = (k[h)py(x; — 3h, ¥));
Hi; = hy; + hiy; + Yhko(x;, y)) (2.9)
Vi = (h/K)pa(xi, y; — 3k);
Vij=vij + %11+ Yhko(x;, y;)- (2.10)

We now identify u;; with an approximation to U(x;, ;)
satisfying the discretized form of (2.1):

where

by = (x5,), (2.12)
together with the boundary conditions
u; = vy = yx ¥, X yyel. (2.13)
If we now define the vector uy by
Uy = (Uyg, Unps « o o5 Upps Uiy Ungs « o o5 Unas « o oy Uiy
Usms + + o> Unm)¥ (2.149)

(the subscript H indicates that the ordering is by rows,
i.e., horizontally; * denotes (conjugate) transpose) and
let Hand ¥ be thematrices corresponding to the difference
operators defined in (2.7) and (2.8), respectively, deter-
mined by this ordering, we may re-write (2.11) and (2.13)
as the single matrix equation

Auy = fy 2.15)
A=H+V (2.16)
and fy is the vector consisting of the {hk¢,} together

where

+ The notation i = 0(1)n + 1 is equivalent toi =0, 1,2, ...,
n+ 1.

167

with any terms contributed by the boundary data (2.13).
With this notation and ordering, the matrix H has the
following block-diagonal (diag) form:

H = diag {H,, . . ., H,} (2.17)

where H; (j = 1(1)m) is the n x n, irreducible, tri-
diagonal Stieltjes matrix (Varga, 1962) of the form

H; = tri-diag {— h;;, H;;, —h;11,;} (2.18)
- Hy; —hy 0 7
—hy; Hy; —h;
(defn) .
= _hij Hij _hi—%- 1,j
| 0 h,; H, 1.
(2.19)

For later convenience we re-define h;; and 4, ; by
hijj="hui1,; =0, j=1(1)m. (2.20)

Furthermore, ¥V has the block tri-diagonal (tri-diag)
form:

V = tri-diag {—v;, V;, —v;, } (2.21)
[V —v, 0
— v V, — U3
(defn) . . .
= —v; Vi — —vi
_0 . — Uy . Vm

where v;, V;(j = 1(1)m) are the n X n diagonal matrices
defined by
v; = diag {vy, . . ., vy}
Vj = dlag {Vlj’ ey an}

and where, in this definition and for later convenience,
we re-define v;; and v; . by

},j = 1(1)m (2.22)

Vit = Vi1 =0, i=1(Dn (2.23)

so that
(2.24)

v =0, =0

We note that, in the above notation, the subscripts j and
i do not refer to matrix elements in the usual manner
but to row and column positions, respectively, of the
mesh R(h, k).

Finally, we let (the meaning of the superscript, ¢, will
become apparent in the following section)

Wy = (U,), . U 2.25)

20z Iudy 61 U0 1sanB AQ /G06€/991/2/8/3I0N1E/|UlWOD/W0d dNo"olWwapese)/:sdRy WOI) POPEOJUMOQ

Peaceman—Rachford method

so that

W = 5 W, - W), 2.26)
and define Si=UpSajs oo o Sud)* 2.27)
so that fu=U"SL L fD* (2.28)

3. The Peaceman-Rachford (P-R) method

The particular alternating direction implicit (ADI)
method we shall consider is the original one due to
Peaceman and Rachford (1955) where, given an arbitrary
starting vector #{Y, a sequence of vectors {u{} is
defined iteratively fromt

(V+rtl)"5"1+i) ZfH—(H—’II)"%) (3-1)
t=0,1,2,....
(H + r Duftd = f — (V —r Dufi™ (3.2)

In the above, P is an intermediate vector, and
{r3(@®=0,1,2,...)is a sequence of parameters chosen
to accelerate the convergence of u{) towards uy; in
practice, a finite sequence of T parameters is used
cyclically, i.e.,

t=0,1,2,.... 3.3

rl-]-T:rl,

We shall not, in this paper, consider how the
{r;} (¢ =0(1)T — 1) are chosen, nor, in fact, conditions
under which the method converges to the solution of
(2.15) or how fast it converges. For a full discussion of
these and related problems see, for example, any of the
references at the end of this paper.

We draw the reader’s attention to a fundamental
requirement of ADI methods, which is exhibited in (3.1)
and (3.2), namely, the need to solve sets of equations at
each half iteration in order to obtain subsequent iterates.
The essential feature of these sets of equations is, how-
ever, that they only involve matrices containing three
non-zero diagonals and hence (see below) such systems
are simple to solve compared with the original system
(2.15). Problems which are more complex than that
defined in Section 2 (e.g. partial differential equations
of order higher than the second) may lead to more than
three non-zero diagonals. Nevertheless, the resulting
systems still maintain band form and are simple to solve
relative to the original system. We would point out
once again that one of the objects of this paper is to
illustrate how all the arithmetic operations implied by
(3.1) and (3.2), including the solution of the above sets
of equations, can be carried out while maintaining the
row-ordering of the vectors {u{?}. As we have already
mentioned in the introduction, this point has important
relevance when serial-access equipment is used for
auxiliary storage—this will be considered in more detail
in Section 5.

t Here we have defined the method for a particular ordering of
the vector of approximate solutions {u;;}, namely the row-ordering.
However, it may clearly be defined independently of any ordering.

168

4. The numerical procedure

We begin this section by obtaining the Choleski or
square-root decompositions of the matrices ¥V + r and
H + rI. Considering first V + rI, we let

Ly(¢) = tri-diag {Q}(t), PX(2), 0} @.1)
Pty 0 0
Q{ (1) PZV) 0
(defn) . . . 4.2)
— 0’y PUn 0
o o PN |

where P/(f) and Qf(t)(j= 1(1)m) are the n X n
diagonal matrices defined by

PJ(t) = diag {1/py(®), 1/p5(®), . . ., 1py(®)}, j = 1()m

4.3)
0/(1) = diag {g}(1), (D), . . ., (O}, j=11m (4.9)

and the {p}(1)}, {q};(t)} are defined by the recurrence
relations
ph(®) =0, i=1(1)n (for notational convenience)

qu(t) = — ’Uijpif,j—l(t) . .
PO — (Vb1 — [qﬁ(t)P}-*}’ F=1ln, j=HDmt.
(4.5)

From the positive-definiteness of ¥ -+ rl, it can
readily be shown that all the quantities involved in
(4.3), (4.4) and (4.5) actually exist and, in fact,
pY(®) >0 (= 1(n, j=1(1)m). For later arithmetic
convenience, however, we prefer to define these quantities
in this “inverse” manner.

The reader may verify that

Ly(OLy(t) = V +rl (4.6)

so that L,(?) is the lower triangular matrix appearing in
the Choleski or square-root decomposition of V + r,I.
Similarly, let

Ly(t) = diag {L,y(0), . . ., Lpu(D)} @.7)
where
L, (t) = tri-diag {g#(¢), 1/p(z), 0}
l/p{’i(t) 0 0
0] 1/p%(1)
e : L= 1(0m
0 o 1UpB)
(4.8)

t Here and henceforth, when one running index exp_ression
follows another we imply that all values of the first expression are
taken for each value of the second.

20z Iudy 61 U0 1sanB AQ /G06€/991/2/8/3I0N1E/|UlWOD/W0d dNo"olWwapese)/:sdRy WOI) POPEOJUMOQ

Peaceman—Rachford method

and the {pfl(r)}, {gFi(1)} satisfy the recurrence relationships

P =0
HO) = — hypt) . = 1(ym.
;é(’) = {H; -I; i O } i=1(Dn [’ m
4.9)

Again, Ly(¢) is the lower triangular matrix satisfying

Ly(OLy(t) = H +rl (4.10)
representing the Choleski decomposition of H + r.I. As
before, all the quantities involved in (4.7), (4.8) and (4.9)
do exist.

We now define vector sequences {w{}} and {z{} by

(+1) — * (t+3)
Wy v(Duy
t=0
¢+ = LE(nuftD }’ 1,2,
We may then re-write (3.1) and (3.2) as
witD = LY fg — (H — rd)
[LE(— D]z}
24 = Lg'(0{fag — (V —)

(4.11)

,1=0,1,2,...(4.12)

[L3()]~ Wi+ b} (4.13)
where
zQ = LE(— Du = L(T — Duf, 4.14)

so that (4.12) has an obvious meaning for ¢ = 0.

The inverse notation used in the defining relations
(4.12) and (4.13) in fact means that, during actual com-
putation, the corresponding sets of linear equations are
to be solved by a simple back or forward substitution.

Let us examine the sequence of operations involved in
executing (4.12) and (4.13).

L uf = [Li(t — D]'2Y: |
From (4.7), this is equivalent to

uy = [Lig(t — D]7'2, j=10m (4.15)
where 2 = (z{%*, z%*, . . ., z%**. From (4.8), this
in turn is equivalent to the back substitutions
) = pi(t —)z
) = it — VAP — qfhr 0 — Duy, ;1o T =10
i=n—1(— 1l

(4.16)
where the {p/(t — 1)}, {g{/(t — 1)} are defined in (4.9).

| 1L &) say) = fu — (H — riDugy:
Rewriting this in component form,
U = fiy + by + (o — HpuD + by 023,
i=1n, j=11)m 4.17

where appropriate terms are suppressed for i = 1 and
i=n.

L witD = [L, ()] 1aY:

169

From (4.2), this is effected by the block forward
substitution:
Wit = PO i)
Wi = [PY()]~ Yy — @YWt Dy}, j = 2(m,
(4.18)
or, on account of (4.3) and (4.4):

WD = ph (NP, i= 1()n

witD = pE)[a® — gh(Ow!], i = 1(Dn, j = 2(1)m.
(4.19)

IV. ufd = [Ly(0)]~ i |

Similarly to III, only using a back instead of a forward
substitution, #{*® is obtained from the recurrence
relations

Ul = pr (Wi, i=1(1n
“x(';ﬂ) = Pi‘;(t)[w.(;ﬂ) - qil,/}+1(t)ui(,t#3 >

i—1(n, j=m—1(—DI. (4.20)

V. @ = fi — (V — rDud: |

That is, using a convenient ordering of the subscript j,
17'(;+i) :fij + [vijux(',t;'-—*)l + (re — Vij)u,(;+*)
ol B i=10n, j=m(=D1 (@421

where appropriate terms are suppressed for j = m and
j=1

VL 2§+ = [L ()]~ &l +d:

Using (4.7) and (4.8), this becomes (again ordering j
conveniently)

2{+0 = pli(oyy+
24+ = PN — g1
i=20n, j=m(—1Dl. (422

The reader may convince himself that the operations
I-VI may be carried out in sequential order by pro-
ceeding through the mesh alternately upwards (i.e., for
j = 1(1)m) and downwards (i.e., for j = m(— 1)1), pro-
cessing each row in turn, so that serial-access auxiliary
storage equipment may be used without impediment.
This is illustrated schematically in the flow chart in
Fig. 1.

Intuitively, however, it would seem that this scheme
would suffer from being input/output boundf since
essentially the same data is being transferred repeatedly
to and from (say) magnetic tapes for each of the

+ We are assuming the use of a computer in which input/output
can proceed in parallel (i.e. concurrently) with arithmetic com-
putation. At a given time, such a computer is said to be input/out-
put bound (or conversely, computation bound) if arithmetic pro-
cessing is held up on account of data transfers to and from
peripheral equipment (and conversely).

20z Iudy 61 U0 1sanB AQ /G06€/991/2/8/3I0N1E/|UlWOD/W0d dNo"olWwapese)/:sdRy WOI) POPEOJUMOQ

Peaceman—Rachford method

operations I-VI, while comparatively little arithmetic is
being performed. This, of course, will depend upon
the detailed features of the machine, in particular the
number of tape-units, the ratio of read/write speeds to
arithmetic speeds, and whether or not the tapes can be
read backwards as well as forwards (reversible tapes).
We shall consider this in more detail in Section 5. We
now show, however, that we can merge I, II, and III
into one combined operation, and similarly merge IV, V,
and VI into one combined operation such that only one
upward and one downward sweep of the mesh is neces-
say to complete one iteration, and the amount of data
transfers is consequently reduced.

In order to merge I, II, and III, we note that the
operation in II corresponding to the jth row can be
performed immediately the operation in I corresponding
to the jth row has been executed. Similarly, the opera-
tion in III corresponding to the jth row can be performed
immediately the operation in II corresponding to the jth
row has been executed, provided that we proceed
upwards through the mesh in the order j = 1(1)m. Thus
the operations of I, II, and III for a given fixed j can be
combined into one operation, A{) (see Fig. 2), and
hence I, II, and III are equivalent to the execution of

AY for j = 1(1)m.

Similar consideration of IV, V, and VI shows that
they are equivalent to performing the operation B{’
proceeding downwards through the mesh in the order
J = m(— 1)0, where B{" is described in Fig. 3.

We repeat that the method now consists of executing
A® for j = 1(1)m, that is, sweeping upwards through
the mesh row by row, and then executing B{” for
Jj = m(— 1)0, that is, sweeping back downwards through
the mesh. We also note that A% essentially transforms
z{% into wiJ?, and that B{" ‘transforms w(D into

Stfxl)H’ the vectors u), u"**’), u Py are only
intermediate vectors.

5. Programming considerations—data handling

In the previous section, we showed how the operations
required to perform one iteration of the ADI algorithm
can be conveniently reduced to an upward sweep
followed by a downward sweep through the mesh
operating upon rows successively; we intimated that
the algorithm in this form is intuitively consistent with
the requirements of the transmission of the data to and
from serial-access auxiliary storage in the sense that all
the data needed for A{" will be accessible first, followed
by all the data needed for A{ and so forth, and similarly
for the B on the downward sweep with decreasing
order of the subscript. It might at first appear, from
the fact that the operations 4% are performed in
increasing order of the subscript, while the operations
B are performed in decreasing order of the subscript,
that this may be inconsistent with the requirements of,
say, non-reversible magnetic tapes which can only be
read in one direction, but this difficulty can usually be
overcome by employing tape-splitting techniques.

170

1. (4.16) II. (4.17) III. (4.19)
> — b>— >—
j=11)m j=m(— D1 j=1)m
|2
1V. (4.20) V. 4.21) VI. (4.22)
>— >—
j=m(— 1 j=11)m j=m(— 11

Fig. 1.—Flow diagram of ADI operations showing
maintenance of row-ordering

uff) = pHe — 1)[z<f> — gl e —Du?), i=n(— D1

~(” —f,, + [hgulfl g+ = Hpul§) + by ity ;) i= n(=D1
w(1+1) _PV(t)[ﬁtll) — q”(t)w(t-f—l)l] i=n(—1n1

where

A, =D =y j=hyyy;=uf] =hy; =0, j=1m
Wit =0, i=1(n

Fig. 2.—Operation 45, combining the operations
of I, II, and III at the jth stage

u(t+‘}) _pV(t)[w1t+l) —q" 1+1(’)“(f,4f-?1 i= l(l)n(j;é 0)
b

A =it [, 1+1"('+*) + (ry = Vi je DUl 8
+v; U TP i =1 (j ~ m)
20 =l Oty — gl (022 ;14) 0= 100 (Gi#m)
where
4 mr@) = w2 =0y =0, i=1(Dn
zgj" =0, j=01)m—1.

Fig. 3.—Operation B}'), combining the operations
of IV, V, and VI at the jth stage

[We note parenthetically that data stored on mag-
netic tapes usually consists of blocks of numerical
information (records) separated by gaps. The write
instruction usually specifies an area of consecutive
main memory locations, the contents of which are
serially transferred to the tape thus forming a block.
The read instruction initiates the transfer of the contents
of a block to consecutive locations in main memory.
Some tape units (reversible) can read the tape whether
it is moving forwards or backwards past the reading-
head; such backward reading may result in the data
being filed in main memory in reverse order to that
resulting from forward reading, leading to additional,
although minor, indexing problems. A useful feature
of reversible tape units, particularly in connection with
iterative procedures, is that it may avoid the use of the
“tape-splitting” technique, in which, say, the first half
of a given set of blocks, which are required sequentially,
is stored on one tape, and the second half on a second
tape, one being rewound while the other is being
referenced and vice-versa (see Section 5(a))].

20z Iudy 61 U0 1sanB AQ /G06€/991/2/8/3I0N1E/|UlWOD/W0d dNo"olWwapese)/:sdRy WOI) POPEOJUMOQ

Peaceman—Rachford method

Although in this paper we are emphasizing serial-
access auxiliary storage, such as magnetic tape units,
much of what is said is equally applicable to slow
(compared to main memory) random-access storage
(discs, drums, and slow-access core storage), where the
transfer of blocks of sequentially stored data is com-
parable, in principle and in speed, to the use of serial-
access equipment. We shall indeed henceforth assume
that the auxiliary storage consists of magnetic tape units,
since the referencing problems are then more acute than

those associated with block transfers to and from random-

access storage; later, the emphasis will be placed on
reversible tape units.

In this section we examine some of the questions that
arise in connection with implementing the above require-
ments. Then it is the programmer’s aim to arrange the
computation, working areas in main memory (for input,
output and computation), the spacing of the input and
output commands throughout the program, and the
distribution of data between the available tape units
such that the input of data for, say, 4}, the computa-
tion of A%, and the output of the results of A}, (and
similarly for BY ., BY, BY)) all take place simul-
taneously and ﬂow contmuously so that the machine is
tape/computation bound (see footnote page 169) to the
minimum degree. Naturally the details of this depend
crucially upon individual computer-system charac-
teristics, e.g., arithmetic speeds, rate of transfer of data
to and from magnetic tapes, the amount of high-speed
storage available, the number of tape units (and whether
they are reversible), and the number of tape units that
can be referenced simultaneously. These characteristics
vary so considerably from machine to machine that no
general discussion is really feasible, each machine
requiring its own particular program. However, there
are a few general principles that can usefully be con-
sidered, and a discussion of these principles will be the
object of the remainder of this paper.

We start by recalling that for the operation A)(B¢)
we transform the vector z(‘)(w(’“)) into w{*h (z““’)
and require the data as set out in Table 1 for each
operation. (Note the slight variant of our previous
notation.)

There is a considerable degree of flexibility in the
way in which the vectors of the ‘“‘decomposition ele-
ments”, pH(r), ¢%(t), p¥(1), q}(1), can be manipulated,
and this has important bearing upon the programmer’s
strategy in achieving the aims referred to above. We
now discuss several alternatives in some detail, and will
finally exemplify one of these alternatives in connection
with a program presently being written for the English
Electric—Leo KDF9 computer of the National Physical
Laboratory.

(@) Computation of all decomposition elements before
iterating

In equation (3.3) we referred to the cyclic use of a
finite set of parameters rg, 1y, . . ., 'r— 1, SO that

P+ T) =pl(t), 1=0,1,2,..., j=1(Lm, (5.1)

171

Table 1

Quantities required at typical stages of the upward and
downward sweep

A(f) Bg')
zg‘) = (thj)’ - zfz’i))* wj(r+1)
PG — 1) = (phit — 1), ..., pF(t — 1))* | p/ (D)
gt —1) = (gBE—1), ... gy, 0 —1D)¥ 41D
,(t) = (pl(®), . . ., Pr()* P
V(t) = (g0, - - - qm,(O)* q,+ 1(1)
= (hyjs o os Bngr, D* D1, D)2
_(Hlj"-" H,)* i/j—f—l
v, = (V)5 Vn))* ’,;j+l
f/j = (Vljs L) an)* in+1
f}:(flj,-u,fnj)* f}+1
The above being used to compute
wj(z+1) — (wﬁ’]“), e w%_ﬂ))* z(}z;tll)

and similarly for the remainder of the decomposition
elements. Thus an obvious technique would be to
compute all the decomposition elements (of which, in
all, there are (4n + 2)mT) at the beginning of the
program, storing them on magnetic tape and using
them as required during the iteration. It is clear that,
for handling the decomposition elements, at least two
tape units, and tape-splitting techniques will be required
to achieve continuous operation. In the event that
reversible tape units are available and the parameters
are used cyclically in the order ry, ry,..

., I'1, I'y, ONly one tape unit is required.

If only two tape units are in fact available for storage
of these elements, then, since 4n -+ 2 elements must be
read during the operation A{’ or B{ (assuming of
course, that the remaining quantities required (see
Table 1) can be read in parallel), a crude estimate of the
arithmetic which must be performed in the same time
indicates that a high reading rate (in comparison with
arithmetic speeds) would be required if we are to avoid
being tape-bound. Alternatively, more than two tape
units would be needed so that shorter block-lengths
can be achieved by sharing the data, and, if necessary,
extending the use of tape-splitting, thereby reducing
tape-bound time (again assuming that parallel reading
of all tape units is possible).

Thus, at the expense of handling large quantities of
data, this is the most efficient ADI scheme from the
point of view of minimizing the number of arithmetic
operations during iteration.

wrr—1,rr—2

(b) Totally redundant computation of decomposition
elements during iterations

Scheme (a) above required either a relatively high

transfer rate or a large number of tape units. If neither

20z Iudy 61 U0 1sanB AQ /G06€/991/2/8/3I0N1E/|UlWOD/W0d dNo"olWwapese)/:sdRy WOI) POPEOJUMOQ

Peaceman—Rachford method

of these requirements can be met, it may still be possible
to avoid being tape-bound, and even to achieve a
reduction in the total time needed to complete an
iteration, although this, as we shall see, will entail
redundant computation.

This redundant computation essentially consists of
recomputing all of the decomposition elements as they
are required and thereby taking advantage neither of
the periodicity exemplified by (5.1), nor of the fact
that the same quantities are used a half-iteration apart
(an important modification of this scheme which takes
advantage of the latter is discussed in Section 5(c)).
However, although the amount of arithmetic is increased,
the amount of data which must be transferred from
tape is reduced (as will be seen below), and the object,
using either this scheme or the modification discussed in
Section 5(c), is to achieve a balance between the two
and hence an overall saving in time.

For any j, we see from the recurrence relations (4.9)
that the elements of p{(r — 1) and ¢{(¢+ — 1) for 4{
and of p#,_(¢) and ¢%, ,(¢) for B{" can be readily obtained
when required. With regard to the calculation of the
elements of pY(r) and ¢(r) for the execution of A,
the recurrence relations (4.5) can be used as they stand
provided that p}_,(7) is available; this in fact is the case
since p/_,(#) has just been computed and used in the
execution of A . For BY), we require p}(¢) and
¢/, ,(#), and we must re-arrange the recurrence relations
(4.5) into a slightly different form, noting that p}, ,(¢)
has been similarly computed during the execution of BY), ,:

@@=V +n
— [Pl]2}
i)
= — g} 11 (D11

the recursion being initiated with the available p)(¢)
which has been computed during 4% and also used
during BY (N.B. ¢, . (1) = 0, see Fig. 3).

This technique is the extreme opposite of that dis-
cussed in Section 5(a) and could be used where either
very few tape units can be referenced in parallel or
where the reading speed is extremely slow in relation to
arithmetic speeds. In the next subsection we discuss
examples of how a compromise can be achieved between
the two extremes so far described.

Ji=1()n, j=m—1(—D]1, (5.2)

(c) Partially redundant computation of decomposition
elements during iterations

One such compromise, clearly, is to output onto tape
the p!(¢) and ¢/(¢) after they have been used in A{
and then read them in again when they are required for
B® and B{" ,, respectively; similarly p%, (¢) and ¢’ ,(?)
are output after B{” and read in again for use in 4{+P.
Thus, it is only necessary to recompute half of the
decomposition elements at each stage.

There are many possible configurations along these
lines and it is likely that an efficient, smoothly flowing

172

— — —

ul) = pHt — D[z + hypyq, pH — D)y ;] i =n(= DI
— —_

—

ap = fi; + [yl + = Hpul +hy g juify ;1 i=n(=1D1

ql) = —vypl; _1(®, i=n(—Dl

PH® = (Vi + 1 — [df®]2 74 i =n(= 11
« <«

Wit = PO [— alfowih], = n(— D1

where

Uy, = g,y = ug) = =0, j=1Mm

p’%(t) =y = W;'f)+1) =0, i=1Mn.

Fig. 4—AY, j =1M0)m
Modified form of operation A\" showing partially redundant

computation of decomposition elements. The arrows above
quantities relate to input|output requirements (see Section 5(c))

- —

12
ufy v = phO[witP + vi, ;1 PHOu A
i = 1(1)n (also for j = m)

— —

— —
~ — (t+3 — . (t+3)
B = fijer + (o TP+ O = Vil T ¥
()
. + 042 T 1]
Py, j+1() =0
o
H _ H
af i = — ki j1pie1,j1®) i=1(1)n
—
H _ H -
iy ={H;j11 +r— [e; 0] 74,
<« «—
+ _ oH it +4) H t+1 P
2T =p; @[— el O) i= HOL
where
a0 i —
U m1 = Uity =0, i =1(n

AP =0, j=m—1(—10.

Fig. 5—B, j =m — 1(— 1)0

Modified form of operation B{ showing partially redundant
computation of decomposition elements. The arrows above
quantities relate to input/output requirements (see Section 5(c))

program can be achieved for a large variety of machine
installations. To exemplify this, we will outline certain
aspects of a preliminary version of a program currently
being written for the KDF9 of the National Physical
Laboratory. This machine is presently equipped with
four reversible, independently buffered tape units (per-
mitting parallel referencing) whose transfer-rate is
relatively slow compared with arithmetic speeds; the
scheme we describe is dovetailed to these properties.

In this scheme we output p!(f) but not ¢}(¢) along
with the intermediate vector w! ™D after completion of
AP, These quantities are input before BY, ready for
use during the latter, when we first compute q/.,(),
using the second equation of (4.5), and later compute
P (¢) and g%, (1) using (4.9); having completed BY,
we output p, (1) along with z{V. Thus we can see
that p#(¢) is available for Af*! and can be used to

20z Iudy 61 U0 1sanB AQ /G06€/991/2/8/3I0N1E/|UlWOD/W0d dNo"olWwapese)/:sdRy WOI) POPEOJUMOQ

Peaceman—Rachford method

Relative address w41 W4i—1 W+ W+i+1 W+n
(t ()
Contents of W-area .. wit T, cee WD wi D wit D, wi £

Fig. 6.—Contents of the W-area of memory for index i during the execution of the last expression of ,71,(-')

recompute ¢*(z) by the second equation of (4.9). We
also compute p}(t + 1) and ¢}(¢r + 1) during A4¢*D,
the former bemg output, thereby completing the cycle
We can thus detail the modified operations 4% and B{
as shown in Figs. 4 and 5.

The arrows above the various elements relate to input—
output requirements in the following way: a right-
pointing arrow (—) means that this is the first time the
quantity above which it appears is being referenced and
indicates that the entire corresponding vector must have
been read in before the expression is executed; a left-
pointing arrow (<) above a quantity means that after
the expression in which the quantity appears has been
executed, the entire corresponding vector may be
written out (this does not mean that the quantity is not
referenced again in succeeding operations; e. -, wiith,
computed during A(’) is referenced again in A(’) D

We point out that the double- subscrlptmg in A(‘)
and Bg‘), while convenient for a clear statement of the
algorithm, is, of course, meaningless in the context of
a computer program, since the program references the
same locations in memory which contain corresponding
elements of similar vectors for successive row operations;
for example, in Fig. 6, we show the contents of the
W-area of memory, where W is the sequence of conse-
cutive memory locations into which the vector wi+D
is accumulated, for a given index i of the last express1on
of A(f)- Similar considerations hold for the other data
vectors. It may be necessary to create two or more
working areas, which are to be used cyclically, for
similar quantities, one being referenced for computation
during a given row operation, the other being tied up
with output of results of previous row operations or
the input of data for succeeding row operations.

With this program and machine configuration, the
time taken to execute the operation AN(,’) or ES’) is very
nearly the same as that taken to read or write a block

of gn numbers from or onto tape; therefore, provided
we distribute the data amongst the four tape units in

the manner set out in Figs. 7 and 8, where only gn

numbers need be transferred to or from the same tape
unit during one such operation, we will be very close to
our desired aim of an optimum balance between com-
putation and input/output.

We note that it is necessary to divide the vectors f;
into two subvectors

S = fap - -

and S= w1, 5 - -

o Sz,)*
oS ¥

(5.3)
(5.4)

173

where f is stored in the same block as »; and I} ona
tape we call the V-matrix tape, and f is stored in the

same block as h and H on a tape we call the H-matrix
tape.

Fig. 7 schematically depicts the state of the tapes
during the operation A~‘,’), and in particular shows those
quantities that have been read and used or computed
and output during preceding operations, those that are in
the process of being read or output, and those that have
yet to be read. Similarly, in Fig. 8 the same features

are exhibited for the operation B{ on the return sweep.

From Figs. 7 and 8 we also see the value of reversible
tapes; as indicated by the arrows, the solution tapes
(those containing p¥(r — 1), z{?, etc.) are always read
backwards and written forwards, whilst the matrix-tapes,
which are never written upon, are read in both directions.
All necessity for tape-splitting and rewinding of tapes is
thereby avoided. We emphasize once again that reverse
reading may invert the order of elements in the main
memory thereby resulting in slightly complex indexing
problems.

6. Conclusions

We have seen how the arithmetic operations of the
Peaceman-Rachford ADI method can be conveniently
arranged to allow for the requirements of serial-access
(or slow random-access) auxiliary storage, and how
various schemes, possibly involving redundant com-
putation, can probably be devised to ensure efficient,
continuously flowing computer programs.

It should be mentioned, however, that these schemes
give rise to certain problems in connection with testing
for the convergence of the iterative procedure. With
iterative processes, usually one accumulates some norm,
||d®||, say, of the displacement vector d¥ = y—D — 4,
and terminates the process when ||d®¥|| is sufficiently
small. In the above description of the algorithm,
however, it may be inconvenient to accumulate ||d®|],
since only z(® and w1, or wt+D and z(¢+1D, are really
available simultaneously. If extra auxiliary storage is
not available, some alternative controls may have to be
devised; for example, these might be based upon the
accumulation of norms of randomly-selected subvectors
of d®,and, when a sequence of these are sufficiently small,
a special procedure may be entered to accumulate and test
the norm of the entire current displacement vector d.

Note added in proof: It has recently come to our atten-
tion that the possibility of conveniently row-ordering
ADI methods for serial-access auxiliary storage has been
independently discovered by W. J. van de Lindt (1964):

20z Iudy 61 U0 1sanB AQ /G06€/991/2/8/3I0N1E/|UlWOD/W0d dNo"olWwapese)/:sdRy WOI) POPEOJUMOQ

(1) Solution tape

Peaceman—Rachford method

no.1 - reading backwards:

—>
>N
) (t) (%) (t)/\ HO (0 NN
Ph(t-1) 28 PO P J+2(t RDENRLMCHE (t-1) _z.k\ p1(t-1¥1 N
I required I required l I requiz'ec)l I requiz'eji I bein% \)15ed I I has been) I
~(t) ~(t) b t ~(t o (t °c t
for & for A 3 for 134.2 for Aj+1 in A3 used ‘in A
(2) Solution tape no.2 - writing forwards: E

\
N

NEHO) !1(“1N\ p?_(t) w41

N

N

(t+1)\ w(t+1)
2(t) N1 1(t) v 'A

Data used in preceding sweep
being overwritten

I comp\(ztz)ad l comp\(xtsad l . | comp\(x‘t;t)ad. I comp?:)ed I
~(t ~(t e Il
1nA1 inAz in AJ-Z :!.nAd_1 .
(3) H-ratrix tape - reading forwards: -
NNIAR \§ . o5 \\ /// ~ A -
ey
\-‘I --‘IfH »«2}{2fH o0 \\ ngjf}; / j) ,]+1 frjﬂ - Ba+2ga+21ij{+2 o0 -}-Imgmzﬁ
has been has been . being used required required required
| used in A, t l used in i(t l "l I in i(t) I for Z(t) I for i(t) I " l for |
se 1 A 3 i 2
(4) V-matrix tape — reading forwards:
<< N ~= Nl -
~ A ATA Y \ N ~ - A ~ A \'d v
\Yﬂl f \ !2Y2~2\ see \ !ijgj‘\ //Y.jﬁyjﬂ €j+12 Zj+2Y-j+2gj+2 b Zmymgm
has been has been) being used required requ:_z'ec)l I requiz‘ec)i I
~(t) o7 (t 2 (E) ~(t) ~(t AR t
l used in A1 | used in A2 l I in Ad for Aj+1 | for Aj+2 l | for lm

has ®

=

(1) Solution tape

being read/written during this operation

een read/written this sweep
—
Fig. 7.—Schematic representation

no.1 - writing forwards:

=3

read/write hea
of tapes during 4

has yet to be re}xd this ‘sweep
arrow indicates direction of tape motion past

<
AN ~
p%) z(bﬁ)\ (t) (t+1) i p Ct) 2 (t?)\ (4) 3 (t+1) Data used in preceding sweep
NN ...m_. P ~3+3\/~3+2 _]+ZA being overwritten
I comp\(zted I corputed l l computed I computed l
t) (t) 3(t) in 3(t)
in Bm-1 in Bm-Z in Bj+2 in B.‘]+1
2) Solution tape no.2 - reading backwards:
(2) p ng _—
NS o N
\s (t+1) \s (t+1) AL E+1) v /t+1)/ NN (t+1N ~ Vv (t+1)~
'}_)1(t) w, gz(t) 5 oos ~J_2(t) LN (t) J_1 / Pa(t ¥ eee Ryt LANRS
. A . > -
l required | required l I required | requlred. l being used I has been l
59 =) 50 50 (0 o | vaed 10 39
for]51 for B2 for Bj—z for B in Bj used in Bm
5) H-matrix tape - reading backwards:
(3) p ng _—
oo s oA PR L SN\ N
h,H, 8 n a8 b, .t //thH//\h. 0Ny - N
~1=1=1 ~272~2 ~J=1=3-1~ 31 PP P N G \\ ~nmm
l required l required I l required | required I being used I l has been) I
3(t) (1) (1) 5(t) 3(t) t
for Bo for B1 for BJ_2 for]3‘1_1 Bj used in B -1
V-matrix t - reading backwards:
(&) matrix tape - r ng backwards >
’ g NSO N N
Aa ¥ RS S s N RCDA'S
T APAPEP Yset¥se1Ly /Xj‘lﬁj Tiu1Y jert :j-r\ \xmszn\
I' requix(-i‘; requiz-eg. | l requiret)i required I being used l has been I
5 (t .ee ~(t ~(t =(t eee =(t
for B for By for Bg_z for ng) in Bg) used in B 4
Key: has been read/written this sweep Q has yet to be read this sweep
) being read/written during this operation arrow indicates direction of tape motion past

—>

read/write head

Fig. 8.—Schematic representation of tapes during §}')
174

20z Iudy 61 U0 1sanB AQ /G06€/991/2/8/3I0N1E/|UlWOD/W0d dNo"olWwapese)/:sdRy WOI) POPEOJUMOQ

Peaceman-Rachford method

“Nuclear reactor calculations with the group diffusion the helpful comments of E. L. Albasiny, C. W. Clenshaw
equations on digital computers.” Doctoral dissertation, and G. F. Miller.
Technische Hogeschool, Delft. The above work was carried out as part of the research
programme of the National Physical Laboratory, and
7. Acknowledgements is published with the permission of the Director of the
The authors would like to acknowledge with gratitude Laboratory.
References
BIRKHOFF, G., VARGA, R. S., and YOUNG, D. (1962). ‘Alternating direction implicit methods,” Advances in Computers, Vol. 3,
p. 189.

PEACEMAN, D. W., and RacHrorD, H. H., Jr. (1955). “The numerical solution of parabolic and elliptic differential equations,”
J. Soc. Indust. Appl. Math., Vol. 3, p. 28.

VARGA, R. S. (1962). Matrix Iterative Analysis, New Jersey: Prentice-Hall.

WacHseress, E. L. (1963). “Extended application of alternating direction implicit iteration model problem theory,” J. Soc.
Indust. Appl. Math., Vol. 11, p. 994.

Correspondence
An impossible program
To the Editor, immediately to a great number of unproved conjectures in
The Computer Journal. number theory. Alas, that it cannot be done in this way!
Dear Sir, Yours sincerely,
Lo . . . BrYAN HIGMAN.
Strachey’s letter* under this title gave rise to some discussion Windy Sayles,
among my colleagues, some of it along the lines of ApSimon’s Felden,
letter,t and it recalled to me similar discussions in my school- Hemel Hempstead.
days about the validity of reductio ad absurdum proofs in 7 May 1965.

geometry. If ApSimon’s objections were valid, they would
apply to all proofs of this sort, and invalidate a fair part of

the structure of mathematics from Euclid onward. To the Editor,
Much more interesting to me is a corollary which I have The Computer Journal.
not seen stated elsewhere. Consider the following program: D .
ear Sir,
begin integer a, b, ¢, m; We wish to bring to the notice of your correspondent, Mr.
for m := 3, m + 1 while true do ApSimon (“‘An impossible program”, this Journal, April 1965,
for a := 1 step 1 until m do p. 72), the method of proof by reductio ad absurdum, in which
begin for b := 1 step 1 until a do a hypothesis is proved false by assuming its truth and deriving
for ¢ := a step 1 until @ + b do a contradiction. In this instance, the hypothesis is:
if am 4+ b™ = c™ then go to out; (i) There is (i.e., it is possible to write) a Boolean function
if @ > 2 then begin with a routine as argument whose value is true if the
for b :— 1 step 1 until m do routine terminates and false if it does not.
for ¢ := m step 1 until m + b do Call such a function T{R].
if m@ + b2 = ¢ then go to out end From (i) it follows, as in Strachey’s letter (this Journal,
ifa January, 1965, p. 313):
end for a and for m; (ii) There is a routine P which terminates if T[P] = false,
out: end program and fails to if T[P] = true.

This is a contradiction. Hence the hypothesis (i) is false,

This, if I have not made any errors in writing it, is a rather '
which was to be proved.

inefficient search program for a counter-example to Fermat’s

last theorem, covering all possible cases in a single denumer- Yours faithfully,
able infinity (this is important). Application of the function W. F. LUNNON,
T to this program would constitute a proof or a refutation C. F. J. OUTRED.
of this theorem. (The inefficiency of the program is irrelevant Department of Computer Science,
for this purpose; one might well imagine that simplicity The University
would be more helpful.) A similar technique would apply Manchester 1 3_’

* This Journal, January 1965, p. 313. 26 May 1965.

t Ibid., April 1965, p. 72. [Correspondence contd. on next page)

G 175

20z Iudy 61 U0 1sanB AQ /G06€/991/2/8/3I0N1E/|UlWOD/W0d dNo"olWwapese)/:sdRy WOI) POPEOJUMOQ

