An introduction to compiler writing

By J. M. Forbes*

This paper is based on a talk given to the Birmingham branch of the B.C.S. in January 1965.
It refers to problems met with in developing a translator and a compiler for LEO III computers.
These have a single-address order code, one level of store is usually recommended, and the order
code is designed to handle and store data directly in any radix; decimal, binary, or a mixed radix

such as sterling.

The compilers referred to in the title of this article are
two in number. Both are working compilers used every
day by programmers on the LEO III range of computers,
and it should be stressed that what is described in this
article are features of compilers which have been
incorporated and proved.

The two compilers mentioned are both scientific and
commercial compilers, but it is their commercial aspects
which are considered here; one is an intermediate
language compiler and the other a full Autocode
compiler.

The words Compiler and Translator are often used to
mean very much the same thing, and will, for this article
at least, both be defined in general terms to mean
computer programs which turn a higher-level language
into a lower-level language. This will enable both the
Intercode translator and the CLEO compiler to be
safely considered within the title.

It must not be thought that compiler writing is
necessarily very different from other kinds of pro-
gramming. Just as in other data-processing applications
one starts with data and ends with results; the only
difference is that the data in compilers happens to be a
computer program. This computer program which is
compiled is known as the source program and the
program produced by the compiler is the object program.

Further, within compilers, the process of going from
data to results may be divided into several parts. In
commercial suites these parts tend to be separate pro-
grams; in compilers they tend to be passes of the same
program because in this case it is known in advance
that one process must immediately follow in time some
previous process.

A first cursory glance at compilers will show that even
the simplest must probably exist in multi-pass form.
That is to say the data must be processed several times.
This is illustrated by the problem of addressing: that is
of allocating a final address by the compiler irrespective
of whether it is a relocatable or an absolute address.
Two main types of address exist: addresses of data and
addresses of program, probably in the form of sequence-
change addresses. If data are declared or described at
the start of a program, that is to say the nature and
length of the data are fed to the compiler before the
instructions, then the address of any piece of data may

be calculated and stored before any attempt is made to
translate any instructions. When the instructions them-
selves are translated the address of any piece of data is
immediately available. However, it may be that for
other compelling reasons the data for a program lies in
store in a position after the computer code instructions.
Thus before the instructions can be translated, and their
total length calculated, it is only possible to calculate
the relative address of each piece of data.

In the case of sequence changes the problem is more
acute. There are three reasons why the address can not
immediately be determined. These occur when any kind
of labelling system exists in the higher-level language,
or the length of the object program instruction is
variable, or if there is not a one-to-one correspondence
between source language and the object program. In
these cases it is not possible to know the final address of
the destination of any sequence change, if that sequence
change is to a point later in the program, until such time
as the instruction, which is the destination of the
sequence change has been reached in the translation
process. There are three possible solutions to the
problem. First the Joad and go method. In this method
the object program is built up in the store during com-
pilation and when compilation is finished the object
program may be immediately run. The second method
is a variation on the load and go method in which, after
the compilation process has been finished, the object
program is written onto some output medium for later
refeeding. In both these cases it is possible to postpone
the calculation of the final address until such time as
the whole program has been through the basic com-
pilation process. However, both these processes suffer
from the drawback that space must be taken in the store
to hold the object program as it is being built up, and
further, in the case of higher-level languages, the trans-
lation process may be of such complexity that the object
code to be produced is not immediately apparent. For
this reason resort must be made to the third method—
the multi-pass method, in which lists may be built up
in one pass of the program and be used in a subsequent
pass to help the translation process.

The two compilers to be described further are both
multi-pass compilers and two features of the INTER-
CODE translator should be particularly noted.
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INTERCODE

It is established practice among LEO users that a
data-processing system will not start to process any
data until that data has been thoroughly vetted. This is
equally true of compilers. If a compiler does not vet
its data thoroughly it is likely to get into trouble itself
or even worse produce wrong object program coding
without any indication that this is the case. INTER-
CODE is an intermediate language with upwards of
150 actions with facilities for constants and tables and an
expansion factor of about 1-0 to 1-5. Once the function
part of any of these 150 actions has been recognized
there remains the problem of vetting the other constit-
uent parts of the action, of which there may be up to 5.

It is a further requirement of the INTERCODE
system that the nature of errors detected be printed out
with the instruction in the program listing. The system
adopted is to divide errors into two classes—disastrous
and others. Disastrous errors would stop the program
running correctly and are indicated by 5 special marks
in the program listing. In addition the offending entry
is designated.

To carry out individual tests on each of these 150
actions, or even to identify them individually and to
carry out tests by subroutine, is bound to be a fairly
long process. Instead a table is held, whose entries are
made up of an instruction number and certain coded
details, each of which comprise a number of bits, which
signify what the valid field values of the instruction are.
This table is held in action-number order and, in fact,
one entry is held only for the highest-numbered action
in a group which share common checking characteristics.
An additional complication is that certain actions may
have continuation lines, and this swells the number of
entries. However, the total amount of space used is
equivalent only to 85 instructions.

The actual checking process consists of doing a
“table look-up,” finding the relevant checking constant
and using that constant to enter a number of routines
to carry out the appropriate detailed checking. This is
not claimed to be some new and marvellous technique
peculiar to compilers; there are many commercial data-
vetting programs which use similar techniques, but what
it does illustrate, is that in an area where it may be
thought that particular compiler problems exist, the
solution lies in an approach which could well be applied
to programs in general.

Another example taken from the INTERCODE
Translator does not point to the same conclusion.

The problems of sequence chamges were previously
hinted at. Here the INTERCODE requirements must
first be explained. As well as producing an object code,
the translator produces a print-out of the source language
in which all sequence changes are marked. That is to
say that against each instruction which is the destination
of a sequence change, an indication is given of the source
of the sequence change or changes. This, in itself,
obviously requires two passes; in fact the INTERCODE
Translator consists of three passes.
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The most obvious way of solving this problem is to
form up in the first pass a list of sequence changes and
sort them into order of destination. In the second pass,
as each destination is reached, the entry in the list is
replaced by the calculated computer code address;
sequence changes are then sorted back into order of
source so that, in the final pass, destination addresses
may be placed in sequence changes.

This system implies that a large expanse of store is
required for sequence changes in each of these three
passes. An improved system has therefore been intro-
duced whereby sequence changes are divided into
sequence changes forwards and sequence changes back-
wards. Sequence changes forwards are sequence changes
to points later in the program. In the first pass only
sequence changes backwards are noted, and sorted into
destination order, giving an obvious space saving in
Pass 1.

In Pass 2, the translation of these backward sequence
changes can be completed, by calculating the final
address when the destination is reached and, as this is
known to be earlier in the program than the source,
this final address can be used to complete the translation
of the sequence change. A further advantage accrues
in that as each source is reached, so this particular entry
may be removed from this backward sequence change
list.

The translation of forward sequence changes does not
now start until Pass 2. Any forward sequence change
is considered between its source and its destination.
When the destination is reached the source may be
printed and the final destination address associated with
the source. At this point in time, the sequence change
can be removed from the active list, and if this sequence
change does not have as its destination the start of a
procedure, that is to say its destination is expressed in
the source language as being relative to a reference
point, it is placed in a new list, which expands as Pass 2
progresses and is used to assign the final address in
Pass 3.

This point raises a question of a more general nature.
In any compilation process it seems that there are bound
to be lists of theoretically indefinite length. If they are
made too small, language restrictions and irate pro-
grammers result. If they are too large, they consume
too much store space which the compiler writer can
usually ill afford. It is up to the compiler writer to try
to resolve this dilemma.

CLEO

The remaining examples are taken from CLEO.
LEO Computers Ltd. started the development of CLEO,
which is a full-scale Autocode, in 1961. It is now being
used by the majority of those English Electric-LEO-
Marconi Computers Ltd. customers who have a member
of the LEO range of computers. This has been a most
encouraging response; more than one user has said
that all his future programming will be done in CLEO
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and at the time of writing at least 25 of the first 30
users of LEO equipment have used CLEO to some
extent.

Part of this success must be attributed to the efficiency
of its compiler. An efficiency of 75% to 809, in main-
frame running time and store usage has been achieved.
These facts suggest that CLEO is the widest used Auto-
code in this country for commercial purposes.

CLEO, in common with other Autocodes, has two
main divisions; the procedure division and the data
division. These two divisions reflect the two main
problems which occupy the attention of the CLEO
compiler.

These two main problems are

(i) to break down the procedures into their con-
stituent parts and into computer code;

(ii) to allocate addresses to identifiers and ensure these
addresses are associated with the references to
their identifiers in the procedures.

It should be added that the compilation process from
CLEO to machine code is divided into two parts: from
CLEO to INTERCODE and then from INTERCODE
to machine code.

Perhaps the best way to see how the compiler deals
with some of these problems is to take a simple example
and follow this through from source language to com-
puter code.

Consider the CLEO command
SET NETPAY = GROSSPAY — DEDUCTIONS

which appears in the procedure division and
assumes that within the data description, the three
identifiers NETPAY, GROSSPAY and DEDUCTIONS
are declared.

The CLEO compiler is divided into six passes, one of
which may be repeated several times. Two types of run
are catered for: an initial run—the first compilation of
any program, and an amendment run—for subsequent
corrections.

The tasks of the first pass are straightforward and
consist of producing an up-to-date listing of the source
program on the printer and writing it onto magnetic
tape. The program, as held on magnetic tape, may be
considered in two parts; the data description and the
procedure description. The next two passes process
these separately.

First the data description is processed, and as a result
of this addresses are allocated to identifiers and these
are written onto an output tape. Thus, at this stage
the three identifiers NETPAY, GROSSPAY and
DEDUCTION appear on the output tape with an
address allocated to each.

Secondly, the procedures are dealt with and the
result of this is once again a list of identifiers, but with
each identifier there is associated a tag which says how
the identifier is used, e.g. as a multiplier in an arithmetic
command, in a print command, etc.
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The order of the identifiers is now one in which it
would be possible to obey the program. It should be
mentioned that LEO III is basically a one-address
machine with an accumulator. Considering the given
example, the three identifiers would have been output
as: Select GROSSPAY, Subtract DEDUCTIONS and
Transfer to NETPAY.

The scanning process

This conversion or scanning process forms an im-
portant and fairly complex part of the compiler, and
it is worth while studying certain aspects of this problem
in more detail.

This scanning process applies mainly to SET com-
mands which are used to carry out all arithmetic processes
in CLEO and which take the form

SET identifier = arithmetic expression.

Now the object program which has to be generated
from SET NETPAY = GROSSPAY — DEDUCTIONS
is perhaps, fairly obvious, but the CLEO language
allows for rather more complex expressions than this,
so that a procedure must be found for turning all
expressions of whatever complexity into an accurate
object program. The method employed is based on
placing the arithmetic expressions into a Reverse Polish
String (Lukasiewicz, 1921, 1929) and when certain con-
ditions are satisfied, generating appropriate one-address
coding.

Operators (that is to say +, —, =, etc.) and operands
(identifiers and literals) are placed in a stack (a list
controlled by a modifier) which works on the ‘last in
first out’ principle. Each operator is assigned a
priority code number as follows:

+, — 30
X, = 40
= 20
Start expression 10
End expression 10

Operators, in fact, have their own stack. They are
placed on this stack only if the code number is greater
than that of the operator on the top of the operator
stack. If not, a generating routine is entered.

The generating routine processes the top operand and
the top operator to produce an output item. These are
then removed from their respective stacks and the
operator under consideration is compared with the new
operator which is on the top of the stack, and the
process continues, with operators either being placed
on top of the stack, or generated and output until
such time as “end of expression” is recognized.

Perhaps an example will serve to illustrate how this
works in practice.

Consider SET A =B+ C X D

The obvious problem here is to avoid performing the
addition before the multiplication.
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The operators in this command are start expression
(code value 10), = (code value 20), + (code value 30),
X (code value 40), and “end of expression” (code value
10). It is therefore not until the end of the expression
is recognized that any generation takes place, and as
the operand stack at this time holds, from the top,
DCBA, the output that is produced from this expression
is

Select D as multiplicand, multiply by C, add B,
transfer to A.

To show that output may be generated before the end

of expression, consider the example

SETA=C X D + B.

In this case the operators at the time when the plus
is being dealt with are start expression (10), = (20), and
X (40). As the next operator value is 30 generation can
take place. This generates “multiply C by D’ and then
allows + to be placed in the operator stack as before.

A particular exception is caused by brackets. An
open bracket is always put on the operator stack without
any comparison and, when the corresponding closing
bracket is found, generation must take place until the
open bracket comes to the top of the operator stack,
from where it is then removed.

A similar scanning process is used to deal with con-
ditions or decision-making commands. The scanner is
able to discern whether it is in a SET or a conditional
command, and deal with “equals” accordingly.

At this stage in the compilation process, when the
scanning has been completed, two magnetic-tape files
are in existence. One, it will be remembered, contains
a list of identifiers, built up from the data description
and containing such details as allocated address, size
and radix of each identifier. The other, produced from
the procedures, also contains a list of identifiers, but in
this case attached to each identifier is a tag which
signifies how and in what kind of command each
identifier is used.

In the case of the original example the output produced
by the scanner would be

Select GROSSPAY, Subtract TAX, Transfer to
NETPAY

Additionally, with each of the three identifiers a tag is
attached which indicates that they occurred in SET
commands.

The remaining passes

The problem now is to merge these two files in such
a way that either the translation process is completed or
sufficient information of the right sort is brought
together in the right form to enable the translation
process to be completed in a subsequent pass.

The merging process which is performed by the next
pass produces as its output one file, on which each
identifier has had its allocated address associated with it.
A large expanse of store is filled with data description,
and the file produced from the procedures is passed
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through and a match sought between the data description
in the store and the identifiers occurring in the pro-
cedures. Where a match is found the data description
appropriate to the command in which the identifier
occurred is associated with the identifier and written on
the output file. If the data description is so large that
it cannot all be held in store at one time the process is
repeated as many times as are necessary to complete
this merging process. At the end of this pass the
identifiers GROSSPAY, TAX, NETPAY retain their
original position on the procedures file, but now have
associated with them their allocated address and declared
radix (e.g. sterling, decimal, etc.).

In the final passes of the compiler two tasks remain
outstanding. These are to complete the translation of
those commands (SET and conditional commands)
whose breakdown began in the procedure editing pass,
and to translate those commands which it has been
impossible to complete since part of the data description
pertaining to them was not previously available.

First the completion of the translation of the com-
mands dealt with by the scanner: these commands, it
will be recalled, had to be considered without any
reference to their data description. The length and radix
of all items are known. It is now apparent that a
programmer has specified, for example, that he wants
to add a sterling number to a decimal number and
produce a binary result. This is a perfectly possible
thing to do in theory, although some conversions have
to be introduced into the object-program coding; or that
the interval between successive occurrences of any item
is greater than unity and that some kind of arithmetic
or shifting must be performed on any subscript before
it is used to carry out the modification. The original
command containing the identifiers GROSSPAY, TAX,
NETPAY would be rescanned with this in mind.

But this part of the translation process is by no means
all loss. With all the information required now available
a second look can be taken at many of these commands
and, in the light of this complete information now
available, a fair degree of optimization can now take
place.

For example, the occurrence of repeated subscripts
can be recognized or advantage taken of the state of
accumulators at a given point in the program.

The translation of the other commands, which tend
in practice to be the more powerful commands, is also
a major task for the later passes of the compiler. The
translation of a command such as MOVE A4 to B, while
it may be a simple process, can also be one of con-
siderable complexity. Thus a MOVE command can
apply to any level of data ranging from the simplest
single item to a large record with complex layout which
may not be completely identical in source and destina-
tion. Obviously, in cases such as this, rules have to be
laid down on how the commands are translated. For
example, the compiler writer must decide if and where
there is a breakeven point between selecting and trans-
ferring between source and destination, and bulk moving
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with its larger initial overheads but quicker operation
once the initial set-up has been carried out.

There are further cases of this necessity to break down
records or groups into their constituent parts in the
input and output commands such as PRINT and FILE.
The translation of these commands, do, of course, make
use of the standard INTERCODE input/output facilities,
enjoyed by all LEO users. Despite this assistance,
however, the formation of the relevant object coding
to deal with such commands is relatively speaking a
matter of hard work and much coding in the latter
passes.

At the end of the compiling process an INTERCODE
object program has been produced, and from then on
the process of reaching computer code is as for
INTERCODE.

Conclusion

The case for automatic programming is well known;
the two main disadvantages, inefficiency in the object
program and the length of time it takes to compile, are
probably equally well known. Unfortunately, these two
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The Pergamon Press has established a high reputation for its
valuable work in publishing translations of Russian techno-
logical works, especially in the field of control. It will lose
that reputation if it publishes more translations as bad as
that of Excitation Control. The book has more errors in it
than a colander has holes. They abound in the text, in the
mathematical equations and in the diagrams; on one page
alone there are seven errors. The post-translation editor
says: “In the main the author’s terminology has been retained
except in the cases where some ambiguity of ideas occurred,
but it is hoped that in this, the edited versions [sic] of the
translation, any errors and imperfections have been reduced
to a minimum.” A post-translation editor should, above all,
be technically knowledgeable in the field covered by the book ;
it is hard to believe this of one who can, to mention a few
examples, print ‘“feeding voltage” for ‘input voltage,”
“extreme” for “extremum,” “transfer’ for “‘transient” (many
times), “multiplier” for “factor,” ‘hydroscopic”” for
“hydraulic,” and “‘pressing device” for ‘“‘screw-down” of a
rolling mill. And what can one think of editing which allows
the German mathematician Weierstrass to appear, after a
double transliteration, as Veiershtrass?

With all these errors it becomes really hard work to find
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out what the book is all about, and the title certainly does
not help the English reader. In the broad, it concerns the
application of the principle of invariance, or the use of feed-
forward, open-loop control paths to compensate for dis-
turbances, including load variations (when they can be
measured), and to make for improved following of input
signals. Chapter I is a brief historical survey, mostly of
developments in the Soviet Union, Chapter II a series of
descriptions of control systems using the method, Chapter III
a short run-down of the theory, and Chapter IV examples of
calculations. The major part of the work, in Chapter II,
consists of a brief précis of each of a number of published
works describing control systems. These are mostly much
too brief for the reader to get a good idea even of the broad
outlines. There is, however, a full list of references, 42 out
of 43 of them to Russian publications.

The book would be of use to the reader whose prime
interest is in studying the state of the art in the Soviet Union,
to whom the survey and bibliography of published work
would be of value. He would probably find it worth while to
consult the original, and it would be interesting to know how
many of the errors in diagrams and in equations are to be
found there. The book is not recommended to those whose
interests in the field are purely technological. Perhaps the
reference to itself, on two occasions, as a ‘“‘brochure” is not,
after all, one of the mis-translations.

R. H. TizArRD
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