Automatic computing: its problems and prizes
By Stanley Gill*

This is the text of a lecture delivered at Imperial College, London, on 26 January 1965, to mark
the inauguration of the author as Professor of Computing Science. It illustrates the kind of
thinking that is involved in the development of automatic computing as a new technology, and
discusses its significance in the wider social context. Computing is compared with printing and
with telecommunications as one of the forces that shape society; it poses economic problems as
well as some very complex technical ones.

The speed of computers

My subject is automatic computing, which, as you all
know, we can now do rather fast. This is perhaps a
trite observation, but I can find no other starting point
for my lecture. Speed of operation is the one basic
achievement on which all the great developments of the
last two decades in automatic computing have rested.
We can now multiply two long numbers, of as many as
twelve digits each, in the time taken by a rifle bullet to
travel about a tenth of an inch. This speed in itself may
not be very exciting, but whenever you get such an
immense change in a capability you must look for the
possibility of some qualitative effects. Take travel, for
instance. Over a century and a half we have progressed
from horseback and horse-drawn carriages to railways,
cars and aeroplanes; a speed increase of perhaps fifty
times. This as you know has had a certain qualitative
effect on people’s lives. But in computing we are dealing
with a factor, not of fifty, but of a million.

Let us look at two other fields where similar increases
have occurred: printing and communication. Fig. 1
shows an early printing press which, I would guess, was
capable of printing about 10,000 words per hour. Fig. 2
shows its modern equivalent, the machine which prints
The Times, and which is capable of printing something Fig. 1
of the order of 1010 words per hour, and which is
therefore about a million times faster than its predecessor.

Fig. 3 shows an early electrical telegraph operator who
could transmit perhaps 200 words per hour. Fig. 4
shows the control room at Goonhilly Down, where the
satellite communication channel could handle over
1010 words per hour if it were all used for telegraphy.
This therefore represents a speed increase of the order of
100 million. As we all know, printing and telecommu-
nications have both had a tremendous effect on our
society.

Fig. 5 shows a desk calculator of the kind that was in
common use in the 1930’s and with which one could
perform two or three hundred arithmetical operations
per hour. Fig. 6 shows an electronic computer of a kind
that is capable of doing several hundred million opera-
tions per hour and is therefore a million times faster than
the earlier machines. The computer shown is the one
that is now installed here in the College. In the centre
can be seen the operator’s control desk, and on the left Fig. 2 By courtesy of “The Times®
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Automatic computing

By courtesy of H.M. Postmaster-General

Fig. 3

the card punch and monitoring printer. In the fore-
ground is a card reader and across the back of the
picture can be seen a row of magnetic-tape units, each
of which can transfer information into or out of the
machine at a rate of 62,000 characters per second. On
the wall at the back is racking holding reels of magnetic
tape.

When this computer is in full use, if the time available
to the College were shared equally between all members
of the staff and postgraduate students, they would get
rather more than one minute per week each. In that
time each man could have several million arithmetical
operations done for him each week. The cost of this is
rather more than £1 per week per head, although most
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Fig. 4
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By courtesy of Olympia Werke A.G., Wilhelmshaven

Fig. §

of this cost is that of the equipment itself, which is on
free loan to the College from IBM, and we are indeed
grateful for their generosity. The cost to the College
works out at around 1 micro-shilling per arithmetical
operation.

The mind tends to boggle at the idea of millions of
arithmetical operations. However, one of our troubles
is that some people don’t boggle very well, and it doesn’t
really take much imagination to think of a calculation
involving a billion steps, if you don’t care how useless
it is. This is an eternal problem in all computing
centres. We who staff the centre cannot easily assess
the soundness of every job that comes our way, and we
must rely largely on the cooperation of all Departments
in ensuring that jobs are worthwhile and well planned.
This means that we would like to see, in all Departments,
people who are familiar with computing as well as with
their own subjects.

The nature of computing

Electronic computers, then, are revolutionary machines,
but what is the nature of this revolution? It has some-
thing in common with the examples which I showed
earlier, of printing and communications. They all deal
with symbols or with language, with the very things, in
fact, to which we owe our intellectual superiority over

Fig. 6
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Automatic computing

other species. Printing and communications enable us
to copy symbols or to reproduce messages, either in a
permanent form on paper, or rapidly in another place
many miles away. Computing is concerned not merely
with copying but with transforming, rearranging and
replacing symbols according to given rules. The point
is that if the language is systematic and the rules are
right, you can to some extent replace intuitive thought
by routine operations on symbols. If] for example, you
ask a young child what number when added to three gives
eight, he will think for a moment and perhaps conduct a
few mental experiments. If he obtains the right answer,
it will be by an intuitive process leading him to the right
experiment. If you ask an older child this same
question, he will perhaps first write down the equation
3 + x = 8, and then, following a rule he learnt at school,
but without stopping to think of the justification, he will
write the equation as x = 8 — 3 and then as x = 5,
and so obtain the answer. The steps from the first
equation to the second and from the second to the third
are examples of computational processes. Any applica-
tion of rules to deduce new facts from given ones, without
the guidance of intuition, is computation. It is clearly
a process of fundamental importance. (Intuition may
of course be required in framing the rules, but not in
their application.)

In a few years we have achieved a millionfold increase
in the speed of computing, or what is perhaps more
significant, a five-thousandfold decrease in the cost.
(There are of course some situations in which the speed
is valuable in itself as, for example, in the analysis of
census returns or in the automatic control of industrial
processes.) Given such a technical advance, what
would we expect to see happen?

First, we would expect to see the immediate application
of the new machines to jobs that are already formalized
and for which computing procedures are known. Such
applications are mostly found in scientific computing
and in engineering design calculations. Secondly, we
would expect people to work out explicit rules for doing
calculations where the rules were formerly untidy and
ambiguous, such as in business data processing. Both
these developments have in fact occurred, and I cannot
possibly list here the many applications which have
already been made of electronic computers; the list is
almost endless.

Thirdly, one would expect people to look for jobs
where computation might provide a good alternative to
present methods of inspired guesswork, such as in
business planning. This is now happening, and business
planning is becoming one of the most profitable areas
for the application of computers.

Fourthly, one would expect computers to be used as
essential parts of systems designed to do things that
simply could not have been done without computers.
It can hardly be said that such projects are yet being
undertaken, but no doubt they will come in the near
future.

There has in fact been a very rapid spread in the use
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PRELIMINARY CHARACTERISTICS

MICROLOGIC ELEMENT "H"
HALF ADDER

SUPPLY VOLTAGE +3Vgc. * 30%
POWER DISSIPATION 45 mW (TYP)
TEMPERATURE -55°C TO +125°C

S = AB+AB
C = AB

INPUT (TERMINALS 1,2,3,5)- CAN BE DRIVEN BY ANY MICROLOGIC
ELEMENT ~ | MICROLOGIC LOAD.

OUTPUT (TERMINAL 6 ) - CAN DRIVE UP TO 4 OTHER
MICROLOGIC ELEMENT LOADS IN PARALLEL.

OUTPUT (TERMINAL 7 ) - CAN DRIVE UP TO 5 OTHER
MICROLOGIC ELEMENT LOADS IN PARALLEL.

AVERAGE DELAY - (TERMINAL 6)- 50 nsec. , (TERMINAL 7)-100nsec.
By courtesy of SGS-Fairchild Ltd.

TOP VIEW

Fig. 7

of computers, starting in about 1950. For several years
the number in use doubled every year. The number is
no longer doubling annually but it is still growing very
fastindeed. There are now something like fifty thousand
of them in the world, effectively equivalent to between
108 and 1010 people. Almost certainly more computing
is now done by machines than by men (and, incidentally,
between 809, and 909 of these machines are in the
USA).

What is automatic computing like? How does one
achieve it? First, one begins with a large number of
elementary electronic circuits, each of which performs a
very simple operation on one or two input signals, to
give an output signal. Right away I must make a
distinction between the two types of circuit that exist,
one of which handles continuously changing signals and
the other of which handles discrete signals that have only
a limited number of meaningful states. It is not easy
to mix these two types of circuit. The former can be
used to make so-called analogue computers and the latter
to make digital computers, which are more expensive,
but enormously more versatile. Without wishing to
offend those of my friends who work with analogue
machines, I am going to talk here only about digital
machines.

Fig. 7 shows the specification of a typical digital circuit
element. Like practically all digital elements, it works
on binary or two-state signals. This circuit element
takes two input signals and their inverses, each in binary
form, and produces two separate output signals. The
relation of the output signals to the input signals is
indicated in the specification by a Boolean expression.

Starting with such elements as this, we need to finish
up with a system that can accept the data for some
specific problem and do a lengthy calculation on it.
Fig. 8 is an excerpt from the specification of a large
calculation showing how the data should be prepared
for it.
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NOTES ON INPUT ~

1. Regions must be identified as follows:

MODERATOR

FUEL

CONTROL (for control rod cross sections)
SIDE (for side reflector cross sections)
END (for end reflector cross sections)

Only one type of the above regions may be given per case (e.g., two ‘MODERA-
TOR'’ regions may not be specified); thus the maximum number of regions per
case is five. Regions may be entered in any order with the first region entered on
page 38. There are additional pages, 39, available for entering more than one
region. A ‘MODERATOR'’ region must be specified.

2. The same temperature must be given for the ‘MODERATOR’ region and the
‘FUEL’ region (if both regions are specified for one case).

3. Materials must be identified by ‘designation’ or ‘formula’. Please see an up-to-
date printout of the nuclear data tape for designations and formulae of materials.
Materials may be listed in any order and may be repeated in the same region.
No more than 12 materials may be given in one region.

4. To compute W for a given material, give a nonzero value for N (or f) and
specify W =0. Correspondingly, to compute N (or f), give N (or f) =0 and give
a nonzero value for W.

5. To compute g factors by program I,, give g =0 for all materials in the ‘FUEL’
region. (If a value of g0 is given for any material in the ‘FUEL’ region,
program I, will not be used.) For regions other than ‘FUEL’, g =1 should be
given. Program I, requires a three-zone cell (D3 >D, >D; > 0). When g factors
are to be computed and if D3 =D, or D; =0, it will be necessary to specify a
false, thin moderator zone (D3 =D, + 10~5 or Dy =10-5 should be satisfactory).

6. If all g factors are unity (as in a homog composition), only a ‘MODERA-
TOR’ region is needed, and all geomeirical input except H, D, S,, and S, should
be zero.

By courtesy of General Electric

Fig. 8

The ability to accept such data as these, and to deal
with them, seems far removed from the elementary
operations performed by the individual circuit elements.
This gap is bridged in stages.

First, the circuit elements are used to build up various
major parts of computers, such as registers for holding
single numbers; arithmetic circuits, for deriving new
numbers from given ones according to the rules of
arithmetic; stores, for holding many numbers and
reproducing any of them on demand (this calls for special
forms of hardware); control units, for directing the
operations of other units; and so on. Secondly, these
parts are assembled according to a suitable overall
design, to form a computer.

But this is still only part of the story. A computer, as
produced in the factory, is not immediately capable of
accepting data and performing calculations like that
illustrated in Fig. 8. All that a computer does is to obey
very simple instructions, each defining, for example, one
arithmetical operation. In fact, the specification of a
computer consists largely of a list of the various
instructions that it can obey. This is called its “‘order
code” or “instruction code.” Fig. 9 shows part of the
order code of a computer. (The instructions appearing
here are actually concerned not with arithmetic but with
choosing the sequence of steps to follow; I will come
back to this point later.) There are other things about
a computer that have to be specified too, so that people
will know how to use it; for example, the manual
controls which allow the operator to steer the computer
in a general way and to cope with various kinds of
failure: see for example Fig. 10.
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LOGICAL COMPARE AND MODIFY INSTRUCTIONS
Mnemonic Mode Code Effect
TRN — 600 None
E 602 If E A C(AC)r = 0, then skip.
A 604 Always skips.
N 606 If E A C(AC)r # 0, then skip.
TLN — 601 None
E 603 If E A C(AC) = 0, then skip.
A 605 Always skips.
N 607 IfE A C(AC)L. % 0, then skip.
TDZ — 630 Clear selected bits. Do not skip.
E 632 If C(E) A C(AC) = 0, then clear and skip;
otherwise, clear and don’t skip.
A 634 Clear selected bits and skip.
N 636 If C(E) A C(AC) # 0, lhen clear and skip;
otherwise, clear and don’t skip.
TSZ —_ 631 Clear and don’t ski lp
E 633 If C(E)s A C(AC) = 0, then clear and skip;
otherwise, clear and don’t ski ip.
A 635 Clear and skip.
N 637 If C(E)s A C(AC) # 0, then clear and skip;
otherwise, don’t skip.
By courtesy of Digital Equipment Corporation
Fig. 9
by a factor of ten up to 340 milliseconds. The right
knob is a continuously variable fine control.
POWER Turns on power to the processor and all equipment

connected to it.

This switch causes the pause mode operation of
memory to change to a separate read and write mode.
When in single step, the memory module is free for
use with multiple processors.

MEMORY DISABLE

DATA Up to 36 bits of information can be inserted for
transfer to memory when the DEPOSIT switch is
pressed. (May be examined under program control.
See 1/0 Programming for Type 166 Processor.)

ADDRESS There are 18 address switches which are used with

various keys and switches.
Function

Indicator Lights

INSTRUCTION Displays bits 0-8 of the instruction register.
AC Displays bits 9-12 of the instruction register.
1 Displays bit 13 of the instruction register.
INDEX Displays bits 14-17 of the instruction register.

MEMORY INDICATION Displays the contents of the specified memory regis-
ter (see EXAMINE lever switch).

Displays the contents of the program counter. When
the processor stops, the program counter will be

pointing to the next instruction.

PROGRAM COUNTER

By courtesy of Digital Equipment Corporation

Fig. 10

The major part of the task of matching the computer
to an actual computing job falls to the programmer, who
must use the permitted instructions to compose a
program for the job.

Thus the logical task, of making a given set of circuits
perform an actual computation, falls into two main
phases. In the first, the computer designer uses the
circuits to make a computer. In the second, the pro-
grammer prepares a program to make the computer do
the calculation. When this has been done, the data can
be prepared according to the requirements of the
program, and the calculation can then be done. In
each phase, the work rests on specifications supplied by
the previous phase and results in specifications to be
used in the next stage of the work.

What does this work look like? The work of the
computer designer is illustrated in Fig. 11, which shows
part of a “logical” diagram giving the interconnections
between some elementary circuits. Programming is
illustrated by Fig. 12, which shows part of a program
forming part of an information retrieval project.
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00000 READDL AB SLJ *x*
00031 EXF 31B,7
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32000 — EXF 320008, 7
04536 ENA DLABEL +4
00003 STA 3

04532 EXF DLABEL, 3
04157 SLJ READDL AB
00000 READEL AB  SLJ **

00051 — EXF 51B,7

52032 EXF 52032B
52000 — EXF 52000B , 7
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00005 STA 5
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04163 SLJ READEL AB
______________ J 04167 75 BCDTEST3  SLJ *x
By courtesy of SGS—Fairchild Ltd 74 32000 — EXF 320008 , 7
04170 74 7 32003 + EXF 320038, 7
Fig. 11 75 04611 RTJ FIXUP3
04171 74 7 32005 + EXF 320058 , 7
75 4 04611 RTJ FIXUP3
. 04172 75 0 04167 S T
Programming 7S + LY BCDTEST3

As you can imagine, it is not at all easy to get a big
program right. One complication is that the program-
mer makes frequent use of the fact that the sequence in Fig. 12
which the instructions are executed need not be the same
as that in which they appear in the program. During
execution, the machine can “jump” from place to place
in the program, at the behest of instructions like those
illustrated in Fig. 9, whose purpose this is. Obeying a
program, in fact, is like playing a game of snakes and
ladders.

This is illustrated by Fig. 13, which shows in snakes-
and-ladders form a program for finding the highest
common factor of two numbers, p and g. The rules for
playing this game are a little different from those for
ordinary snakes and ladders. Specifically:

By courtesy of the Office of Naval Research, American Embassy

6 7. FINISH

If p<O

slide bac q is the

HC.F

(1) there are no dice; you move only one square at a
time;

(2) you must obey the instruction in each square as
you come to it;

(3) the snakes and the ladders may be conditional;
i.e. they are not necessarily used every time they
are encountered, but only if the instructions say
so; and

(4) as normally obeyed by a computer, this is a game
for one player only; the competitive element is
lacking (though it is worth noting that we are now Fig. 13
beginning to make use of computing systems in
which the same program may be in process of

execution in several different contexts at the same INSTRUCTION ~ RESULTING VALUE OF COMMENTS

time). NUMBER p q
This program actually expresses a simplified form of 1 18 12 Go up ladder
Euclid’s algorithm for solving this problem (an algorithm 4 6 12 p decreased by 12
being any strictly defined computing procedure). Let us 5 6 12 p positive; slide back
run through this program for the case where p = 18 and 4 —6 12 p decreased by 12
g = 12. The instructions are obeyed in the following 5 —6 12 p negative; ignore snake
sequence. 6 —6 12 p negative; back to 2
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2 6 12 p increased by 12 Begin — > Read first card
2 lg’ g p an q ln'(:ieli;:haglged Compare Part numbers in Stock Record and
p decreased by A ” Record
5 6 6 p positive; slide back —>Error
4 0 6
P decreasq! by 6 Matched Unmatched
5 0 6 P not positive; go on
6 0 6 P not negative; go on ras taken ol
imich - [ Stock on hand and Ifat tion 'has taken place
7 0 6 Finish: result = q= 6 glt’:la::c:;;?s or ?scsue‘:‘ anc an ‘ __>Pri;t ;at?as:(s:;&ion Record. P
. . . 1f no more cards go to unmatched If the stock on hand is below the
This example illustrates clearly the rather tedious way gherwise read next Movement print a req slip.
in VthCh a computer may have to proceed thrgugh even | Write up new stock record on new
a simple calculation. The above manoeuvring looks master file.
positively ungainly; a human could obviously short-cut ) !
. . . . . Clear issue and receipt totals.
it quite a bit. But this procedure has the great virtue  end of cither i p
o, s . . i t ing,
that it is completely automatic, assuming that one can , B ot end mext Mook recon
mechanize each individual step. And the speed of from master fil.

modern computers is such that all the above steps can

be performed in less than 0:0001 second. With such v
speed provided, one can afford to put up with a rather End
pedantic approach to problems. Fig. 14

I said just now, “assuming that one can mechanize
each individual step.” Of course the repertoire of
instructions in a computer is limited. Most computers
would not be able, for example, to interchange p and ¢
in a single step. It would then be necessary instead to
use three instructions, and to introduce a third variable,
r say, that would act as a kind of “‘parking space” for one
of the values during the interchange. The three steps
could then be as follows:

tNSTRUCTION ]
Setr=p
Setp=g¢q
Setg=r TACCESS

This is an example of programming detail. Program- (
ming also has its architecture, and Fig. 14 shows the
“flow chart” of a program. This indicates in general
terms the various groups of instructions that comprise

a program; the arrows show how the attention of the fETCH
computer passes from one section to another. NoEXING. 4 %L’r:f:éér 1
INED,

The idea of a flow chart can also be useful on a much ETC)

smaller scale. Fig. 15 is part of a flow chart drawn by
a computer designer to show how the machine proceeds
during the execution of a single instruction.

How are we to characterize this work? At the basic
level, it is clearly part of electronic engineering. Yet
even at this level it is often not specifically electronic in
nature. The emphasis throughout is less on the proper-
ties of circuit elements than on the logic of their inter-
connection. Nevertheless it is still engineering; we are
using scientific knowledge and methods to meet practical
needs.

In the same sense, programming is also a kind of

TACCESS
+04 usec

FETCH
cle) 9
DEFERRING {

1-0
DATA
POINTER
FETCH

engineering, although the scientific knowledge involved T access
is purely logical rather than material. It is, if you like,
“mathematical engineering.” ¢ svre romren reron O

Let us look at some of the techniques of this activity.
The most basic technique in programming is the use of
subroutines. A subroutine is simply a group of instruc- Fig. 15
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By courtesy of Digital Equipment Corporation
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tions telling the machine how to perform some clearly
defined action; the subroutine can be filed, and used
whenever this action is required. For example:

Subroutine: Interchange x and y

Set z = x
Setx =y
Set y = z.

The idea is simple enough, but in practice there are many
complexities. We shall look at just one of these, the
problem of keeping “‘links.”

Often the same subroutine is required to be used at
several different points in a program. If it is a big
subroutine, it is wasteful to occupy space in the store of
the computer with several copies of the subroutine. One
is enough, provided it can somehow be arranged that the
machine’s attention is switched to the subroutine when
required, and is switched back again to the right point
in the program when the subroutine has been executed,
as shown schematically in Fig. 16. But this means that,
while the subroutine is being executed, a record must be
held, in some standard place, showing the point that has
been reached in the execution of the main part of the
program, so that the machine will “know” where it must
return after executing the subroutine. This record is
known as the “link.” The box representing it in Fig. 16
is actually labelled “Link etc,” because in general it may
be necessary to store some other information as well.
Most computers have a few registers that have special
properties, being particularly readily accessible or playing
special roles in arithmetic. These registers may be
needed by the subroutine, yet they may already contain
some information that is vital to the calculation and that
will be needed there afterwards. This information must
therefore also be stored, along with the link, so that it
can be restored when the subroutine has done its work.

Now, suppose that the subroutine itself uses another
subroutine. The second link cannot be kept in the same
place as the first, which is not yet finished with. There
must therefore be room for two links, as shown in
Fig. 17. In general, in a complicated program, several
links may need to be stored simultaneously, and the
system must allow for this.

There is, however, one special case in which entering
a “sub-subroutine” does not demand an extra link space.
This is where the call to execute the “‘sub-subroutine” is
the final act of the subroutine (see Fig. 18). In this case
there is no need to return to the subroutine, whose work
is finished, and the sub-subroutine can instead (when it
has completed its job) hand control of the machine
straight back to the main program. Hence the sub-
subroutine can be given the subroutine’s link as its own,
and there is no need for two link spaces.

This may seem a trivial technicality to include in a
lecture such as this. I have picked it because, in addition
to showing the kind of thing that a programmer has to
worry about, it also illustrates a rather interesting
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SUB-ROUTINE

Fig. 16

I

Link 1 etc.
Link 2etc.

SUB-ROUTINE o3 8 -ROUTINE

/_____/’_____
T~ —— ~ ——

Fig. 17

T

SUB-ROUTINE

- / SUB-SUB-ROUTINE,

Fig. 18

analogy. This business of links, and of rescuing work-
in-progress from special registers to allow a subroutine
to use them, is really quite fundamental. It occurs in
many forms of computing system, and also in the human
brain (although we cannot say where, physically, the
links are stored). The following example of an English
sentence will make this apparent; for in unravelling a
sentence, the brain follows a procedure which can be
compared with a computer program.

Consider this sentence: “This is the cat that chased the
rat that ate the malt that lay in the house that Jack built.”
Many people have demonstrated that this sentence can
be readily understood by the average child of four.

Now consider the following: “The house in which the
malt that the rat that this cat chased ate lay was built by
Jack.” This sentence conveys exactly the same meaning
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as the one quoted earlier. It is a little more concise,
containing fewer words, and also fewer subordinate
clauses. Yet it is harder to follow. Why?

Let us examine its structure. In Fig. 19 it is laid out
with each clause on a different line, using arrows to show
the path followed as the sentence is uttered. We can
think of the brain as entering a subroutine in order to
understand each clause; as it does so, it must store a
link, etc., summarizing the stage it has reached so far, to
be picked up again when the clause has been taken in.
Owing to the deep ‘“nesting” of clauses, one within
another, three links are required.

Fig. 20 shows the original, more familiar sentence laid
out in a similar way. Here there is an even deeper
nesting of clauses, and at first sight it seems that the
brain must hold four links simultaneously. A compari-
son with Fig. 18, however, will show that this is a case
where the short-cut can be employed, because each
clause forms the last component of the one above it.
Hence only one link space is needed. The remarkable
thing, perhaps, is that the brain learns this short-cut at
the age of four!

The use of subroutines is only one elementary way of
easing the task of programming. A much more power-
ful way is to write your program in a more convenient
language than that of the machine itself, and then to get
it translated into machine instructions. If the language
is precisely defined—as it must be (unlike English) if it is
to express algorithms unambiguously—then the transla-
tion can be done by following rules. Thus it too becomes
a computation, carried out according to an algorithm,
which can be expressed as a program; so the computer
can translate its own programs. (A program used to
translate other programs is called a compiler.)

The work of programming thus becomes split into two
parts. The first is compiler writing, which bridges the
gap between the instruction code of the computer itself,
and the more convenient language in which programs
are actually written; and the second is the writing of
programs for actual jobs. The compiler writer takes as
his starting point the given instruction code of the
computer; using this, he aims to write a compiler that
meets a target specification which lays down the language
that is to be accepted and translated by the compiler.
Fig. 21 shows part of a specification of such a program-
ming language.

This specification is in turn the starting point for other
programmers, who use the language to write programs
for actual jobs. Fig. 22 shows part of a program
written in an international standard programming
language called “ALGOL.” It may look cryptic to the
novice, but an equivalent program written in the
machine’s own instruction code would look even more
cryptic, and a great deal longer.

A good compiler will do more than translate programs;
it will also help the user in finding his mistakes. Fig. 23
is another excerpt from the same specification illustrated
in Fig. 21, showing some of the diagnostic information
that the compiler provides.

The house was built by Jack
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in which the malt | lay
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that the rgt/ ate
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y
that this cat chased

Fig. 19
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that chased the rat
V //
that ate the m%
fhat lay in the h

at lay in the house
— =
that Jack built

Fig. 20

The arithmetical instructions

The basic form of the instructions for computing variables may be illustrated by

the following example :

Yy =2mn a4 + a,n + ma, + 0:0lm + 0-0ln
which gives the new value of the variable to be altered (in this case y) in terms of
other quantities.

In general the right hand side may involve any number of products which may
each have any number of factors either variables, indices, or constants. As already
mentioned it is necessary to distinguish in the ‘one-dimensional’ form

Y = 2mna(m+1) + amn + man + 0-0lm + 0-0ln
between am meaning a,, and a xm.. The convention adopted is that an index
immediately following a variable letter is treated as a suffix so that the above
expression is interpreted as
Y =2XMXN X84, + (@ xn) + (mxa,) + (0-01 xm) + (0-01 xn)
As a consequence of these rules, numerical factors will usually be placed at the
beginning of a product.
Further examples of instructions in this general class are:—

a=0 x=x+1 x,=x,+nh x=1i
Products can also be divided by a single quantity
thus u =x/a +y/b + z/c
and v =2 mu/n

are possible instructions.

By courtesy of ICT Ltd.
Fig. 21
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begin
real bigajj;
integer i, j, k;
real array p, g[1: n];
Boolean array r[1: n];
for i: =1 step 1 until # do r[i]: =true;
grand loop:
for i: =1 step 1 until n do
begin
search for pivot:
bigajj: =0;
for j: =1 step 1 until n do
begin
if r[j] A abs(alj,j])- > bigajj then
begin
bigajj: =abs(a[},j]);
k:=j
end;
end;
if bigajj =0 then go to fail;

By courtesy of the A for Computing Machi

Fig. 22

y, New York*

Manipulating symbols

It will be clear from what I have said that computing
nowadays involves many things besides operations on
numbers. Compilers, for example, have little to do
with numbers, although the programs which they trans-
late are usually destined to operate on numbers. In
fact, many applications involve other kinds of informa-
tion. In business data processing, computers must
handle names and addresses, catalogue codes, and
various kinds of categorization such as sex, marital
status, etc. Those whose interest centres on the compu-
ting systems themselves are particularly interested in
operations on strings of symbols, because most of the
information entering a computer is in this form. Let us
take as an example the following string.

(32 + v/ b)/(3a + 1)

Now most computers work in terms of binary digits,
which have only two possible values, 0 and 1. A printed
symbol is coded as a set of binary digits; usually either
5, 6, 7 or 8 of them. So, using a suitable code (with
say 6 binary digits per symbol), the above symbol string
might appear as a long string of binary digits thus:

001000010011100001011101111 . . .
L JL JL

Il I

( 3 a +

Inside a computer, these binary digits are held in
groups of a particular length, usually between 20 and 50,
called words. 1t is therefore possible to pack several
coded symbols side by side in a single word. Thus if

* Part of Algorithm 150, by H. Rutishauser, Communications
of the ACM, Vol.6, No. 2, p. 67 (February 1963).
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IIIA. Faults encountered during INPUT
1. The machine may come to a 99 stop (PF = all zeros).
CAUSE: NO matrix tape in machine OR incorrect form of instruction.
2. The machine may stop and record ACCUMULATOR OVERFLOW
(the 2 most significant digits of YA are different).
CAUSE: Incorrect form of instruction.
3. The parity light may come ON with PF=0010100. .. but NO drum
selection light ON.
CAUSE: Incorrect form of instruction OR ERROR on tape.
4. The machine may come to a LOOP STOP (PF =0000001000) /N THIS
CASE, LOOK IN B7 which will give the FAULT NUMBER.
Certain versions of AUTOCODE do not stop on encountering an input
fault, but continue to translate and list all the faults discovered during
the input attempt.
I1IB. Faults encountered during OPERATION
1. The machine may come to a loop stop (as Note 4 in 1IIA). LOOK
IN B7 for FAULT NUMBERS 8, 32, 33 to 35. Fault 32 can be
surmounted after correcting the tape, by resetting control to 15.0.
2. The machine may record ACCUMULATOR OVERFLOW. The
numbers have exceeded capacity, i.e. > 1077,
IV.  Action required when the hooter sounds

By courtesy of ICT Ltd.
Fig. 23

there are 24 binary digits per word, we could arrange our
symbols 4 per word as follows:

Word 1: ( 3 a +
Word 2: V4 b ) /
Word 3: ( 3 a +
Word 4: 1 ) end

The serial number, by which each word is identified, is
called its address. Most computers can store several
thousand words, each identified by a different address.

The above arrangement, with 4 symbols per word, is
clearly economical in storage space. However, if we
wanted to make the computer work on this symbol
string, it would probably be more convenient to use a
separate word for each symbol, so that individual
symbols could be more quickly picked out or changed.
Of course, much of each word would be left unused.
The first few words would look like this:

Word 1: (
Word 2: 3
Word 3: a
Word 4:

Word 5: \V
Word 6: [ b

etc.
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This form is convenient for many purposes, but is still
not ideal if it is necessary frequently to remove or insert
symbols in the middle of the string. For this, the
technique of chaining is used. In the last example above,
the symbols occupy consecutive words, and the position
of a symbol in the string is defined by its position in the
store. When chaining is used, the words may be scat-
tered anywhere in the store; the proper sequence is
defined by quoting, in each word, the address of its
successor. Retrieving the string is like following a
treasure hunt:

-
S Ea—-
T e a1
> A

35| + 60 e

With this method of coding we can arrange to insert,
say, a symbol “b” immediately after the “‘a,” by taking

any free word, say Word 10, and setting this and
Word 26 thus:

Word 10: b 35

Word 26: a 10

So far I have not made any reference to any possible
meaning of this symbol string. In practice, this string
is obviously intended to be interpreted as an algebraic
expression, and we are likely to want to make the
computer do operations on it based on its structure as
an algebraic expression. This structure is best depicted
as an inverted tree, with the principal operator at the top:

N
VANRVAN

ANTA

There are ways of representing this structure fairly
directly inside a computer, but before I go on to this I
will make a few remarks about the relationship between
the tree form of the expression and the serial string form.
Most languages of any power express concepts having a
fairly elaborate structure; English certainly does. Yet,
for most purposes, it is necessary to express messages in
the form of a string of some kind. Speech, for example,
requires us to utter sentences consisting of a simply
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ordered set of words. In fact, transmission through
any kind of channel of limited capacity forces informa-
tion to be treated in the same way as meat is treated by
asausage machine. If the structure is to be reconstituted,
there must be conventions (i.e. a grammar) by which the
structure can be deduced from an examination of the
string. The conventions are largely arbitrary; for
example English and French use different word orders
to express the same underlying structure. In fact in
natural languages the conventions are often imperfect,
so that the structure cannot always be recovered
unambiguously.

It is worth noting that in biology the genetic informa-
tion is also held in the form of a string, although it
represents something with a very complex structure
indeed. Perhaps this is because the copying processes,
to which this information is repeatedly subjected, impose
a bottleneck through which the information can only
pass as a long string.

Returning to algebra, again there must be conventions
to indicate the structure of an expression, but again these
are arbitrary. Simple arithmetic operators like 4+, —, X
are usually written between their operands; thus we
write a + b, 5— 2, a X 3 etc. For general mathe-
matical functions, however, we usually put the function
name in front, thus: f(x,y). We can do this for all the
operators, in which case we have what is usually called
the ‘“‘Polish” notation, having been invented by the
Polish mathematician Jan Eukasiewicz in the 1920’s. In
Poland it is called the ‘“parenthesis-free” notation,
because it has the property that, provided each operator
has a known fixed number of operands, it is not necessary
to use brackets to avoid ambiguity. Thus the foregoing
example would appear in Polish notation as follows:

+ + X 3a4/b + X 3al

It is said that Lukasiewicz happened to possess a type-
writer on which the brackets were in upper case and all
the other symbols in lower case, and that he used this
notation so that he could type expressions faster.

It is also possible to use a “reversed Polish” notation,
in which every operator comes after its operands; again,
brackets are unnecessary.

3axby +3ax14 =

This reversed Polish notation has become of very great
interest to computer programmers, on account of one
special property. This is that it can be used directly as
a program, for a particular type of machine, to evaluate
the expression represented. The machine must have
what is known as a “push-down” or “nesting” accumu-
lator. This is a register that can hold indefinitely many
numbers; as each new number arrives it is placed on top
of those already there, which become inaccessible until
the top number is removed again. When evaluating
an expression, any number that is encountered is simply
placed on the top of the accumulator. If a letter is
encountered the number that it represents is placed on
top of the accumulator. When an operator is encount-
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ered, the requisite number of operands is taken from the
top of the accumulator, the operation is performed, and
the result is put on top of the accumulator. At the end
of the evaluation the top number in the accumulator will
be the value of the whole expression; any initial contents
which the accumulator may have had will remain
unchanged, underneath.

The evaluation of the above expression, in the case
where a = 2 and b = 64, would proceed as follows:

Program step: |3 |a |X |b |4/ |+ |3 a|x |1 |+ |+
Contents of 312161(64[8(14/31216(1|7|2
accumulator: 3 6|6 14| 3 (14| 6 |14

14 14

Since the reversed Polish notation gives particularly
compact programs for evaluating expressions, it has been
used as a basis for the instruction codes of some
computers.

There is, however, one thing that cannot conveniently
be done with any serial representation of an expression,
but that can easily be done with the tree form. This is
to avoid the need for duplicating a sub-expression that
happens to be used more than once in the expression.
Thus the sub-expression 3 X a occurs twice in the above
example, and it has to appear twice in each of the serial
forms. One result of this is that, when the expression
is evaluated using the push-down accumulator, the same
multiplication is done twice. The tree notation, how-
ever, avoids this duplication in a perfectly natural way:

/\
AN
b 3/ \a

A fairly direct representation of this tree form can be
devised for use within a computer, by an extension of
the ‘“chaining” technique mentioned -earlier. Each
simple expression or sub-expression appears as a chain
of words, each containing in its left half an element of
the expression, and in its right half the address of the
next word in the chain. (The last word contains here
some terminating symbol, which I will write as @.)
I will assume that the elements of a simple expression
appear in this chain in Polish order, i.e. operator first,
followed by its operands. If an operand is a single
symbol or number, then it is recorded directly in its half-
word. If, however, it is a sub-expression, then the
half-word contains an address, namely the address at
which a representation of the sub-expression may be
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X o 3| a

Fig. 24

found. Starting at this address, the sub-expression is
stored in exactly the same way as the expression of
which it forms a part. Thus either half of a word may
contain an address “pointing to” some other word; it is
convenient to depict this relationship by an arrow leading
from the half-word containing this address to the word
whose address it is. In this way the whole expression
as stored in a computer may be pictured as in Fig. 24.
This kind of arrangement is known as a “list structure,”
and several computer programs have been written for
performing miscellaneous operations on list structures.
Most of them allow for common sub-structures (like the
bottom row of words in Fig. 24); another possibility,
which is usually ruled out on account of the complications
that can arise, is that the structure may be recursive, i.e.
there may be a closed loop of arrows.

As an example of the kind of processing that might be
carried out by a computer on list structures, consider the
formal differentiation of algebraic expressions. Let us
denote the result of differentiating expression E with
respect to variable x by D(E,x). E will consist of an
operator, which we will denote by F[E], and one or more
operands, which may be written A,[E], A,[E], . . . etc.
These operands may themselves be expressions with
operators and operands, or they may be “‘atoms” (i.e.
single variables or constants). The process of differ-
entiation may be defined in the following way:

[ if E= “x": 1
I otherwise if E is an atom: 0
l otherwise if F[E] = “+”:

N D(Afl[E[]é)]&) x D(A,[E],x)
otherwise if F[E] = “—"":
D(Ex) = % D(A,[E],x) — D(A[E]x)

| otherwise if F[E] = “X”:

| A,[E] X D(A,[ELx) +

| A,[E] x D(A4[E]x)
| ...otherwise .. ... etc.
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It is possible to write an ordinary computer program to
follow these rules and thus to perform differentiations.
(The result may, however, bear simplification, a more
subtle process which I will not go into here.) We could,
however, go further and note that the above definition
of the differentiation process is itself tree-like in structure,
and can be considered as an algebraic expression
(although its operands are formal, not numerical). By
adopting suitable conventions it too can be stored in a
computer as a list structure. One can then consider
writing a computer program that will apply, or “eval-
uate,” any such definition in any given context. Several
such programs have been written, the most noteworthy
being one known as “LISP,” developed by McCarthy at
M.I.T. The fact that a definition may, like the one
shown above, be highly recursive, does not upset LISP,
which takes recursion in its stride.

I hope that, in years to come, we shall be able to leave
all our tedious algebra to computers. There will be
difficulties, of course, in steering a computer through a
long series of manipulations; often it is not easy to lay
down in advance just what kinds of manipulation are to
be performed. This problem is being tackled on two
fronts. First, computers are being developed that can act
immediately in response to requests made through a
directly connected keyboard, and can then, without
serious loss of efficiency, wait for the user to examine the
result before making a further request. Efficiency of
utilization of the computer is maintained by allowing
several users to carry on such ‘“‘conversations” with the
computer at the same time through different keyboards,
and by filling in any remaining gaps in the computer’s
time with a steady load of low-priority work.

Secondly, algorithms are being devised by which a
computer can obtain on its own, results that previously
required the intervention of human intelligence. This
is happening, in particular, in the field of theorem-
proving, which can be regarded as manipulations in the
algebra of symbolic logic. To find, by random search-
ing, a series of manipulations that will lead to a proof
of a given theorem is impractical owing to the enormous
number of possible steps that present themselves.
Recent work has shown ways of conducting the search
so as to reduce considerably the number of steps required.
Clearly this is only the beginning of a very big subject,
but results so far are promising, and there are good
prospects of mathematicians getting practical assistance
from computers sometime in the future.

At present, the main practical application of the
programming techniques, like those exemplified in LISP,
that involve a high degree of abstraction, is in writing
compilers (the programs that translate programs into
computer instructions). It is now common practice to
define the syntax of the language being translated in a
formal way; for example, the following is an excerpt from
the formal definition of the syntax of ALGOL.:

[adding operator] :: = + | —
[multiplying operator] :: = X | /| +—
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[primary] :: = [unsigned number] | [variable] |
[function designator] | [arithmetic expression])
[factor] :: = [primary] | [factor] 4 [primary]
[term] :: = [factor] | [term] [multiplying operator]
[factor]
[simple arithmetic expression] :: = [term] |
[adding operator] [term] | [simple arithmetic
expression]
[adding operator] [term]
[if clause] :: = if [Boolean expression] then
[arithmetic expression] :: = [simple arithmetic
expression] |
[if clause] [simple arithmetic expression] else
[arithmetic expression]

Each name enclosed in square brackets is the name of a
particular type of phrase that can occur in ALGOL.
The phrase-type named on the left of each line is defined
on the right by exhibiting the alternative constructions
that a phrase of this type can have, separated by vertical
lines. It is now a common practice to write the part of
a compiler that handles the syntactic analysis in such a
way that the syntax itself is embodied in statements like
those above, to which the compiler refers in order to
interpret a given text.

There has only been time in this lecture to dabble in a
few of the tricks of modern computing. 1 hope, how-
ever, that I have said enough to show that computers are
not only incredibly powerful tools, but also a tremendous
intellectual stimulus. In striving to make computers do
our reasoning for us, we are getting an entirely new
insight into what ‘“‘reasoning” is.

Before I end my talk, and as a change from the appli-
cations that I have been considering so far, I would like
to show you a short film made at the M.I.T. Lincoln
Laboratory, showing the processing of graphical informa-
tion by computer. The shapes that you will see in this
film are coded as sets of elements, as combinations of
lines, circular arcs, etc., and stored as list structures in
the computer. This is not yet a commercially viable
application, nor does this film show all the tricks that
are possible. I am sure that, as you watch this film, a
lot of ideas will occur to you for extending the work that
is shown here.

[Professor Gill then showed the film ‘‘Sketchpad.”]

Conclusion

The title of my lecture is ‘““Automatic computing: its
problems and prizes.” I hope that I have said enough
about the prizes, and I have mentioned one or two of the
problems. Let me finish with a few more words about
the problems.

There are really two big problems in computing today.
The first is a problem of economics; the problem of
getting the right investment in the right thing at the right
time. Free enterprise does not operate very well in the
computer field, because the profit does not always accrue
to the person who makes the investment. The result,
especially in this country, has been very unfortunate.
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There is no doubt, in my mind, that computer technology
is more important for the future than aviation, atomic
power, or space travel. It calls for smaller investments
than these, investments measured in tens of millions
rather than hundreds of millions, yet whereas we have
put thousands of millions of pounds into these other
kinds of research, we have probably put less than ten
millions altogether into computer research. We now
have a lot of leeway to make up.

The other big problem is the design problem. I am
referring not only to the design of the computers them-
selves, the ‘“hardware,” but also to the design of the
“software,” the collection of standard programs—the
compilers and so forth, amounting perhaps to over
100,000 instructions—needed to make computers do the
kind of tricks that I have been talking about. I am
referring, in fact, to the whole great edifice of ‘“mathe-

Reference

matical engineering” that comprises a complete compu-
ting system. This is now so vast, rambling and expen-
sive, that it demands much more study than it has had
so far. One obvious need is for more standardization
at all levels. But there are so many people involved,
and the repercussions of a decision so complicated, that
standardization is extraordinarily difficult.

I myself would like to see more theoretical work done
on this subject, and more attempts to extract general
principles by studying mathematical models of certain
aspects of computers. This is a subject that uses many
of the methods of mathematical logic, but requires an
appreciation of the practical problems of computing.
There are, unfortunately, very few people looking into
it in this country at present. If my arrival can do
anything at all to promote the study of this subject in
this College, then I shall be very pleased.

MCcCARTHY, J. et al. (1962). LISP 1.5 Programmers Manual, M.1.T. Press.

Book Reviews

Time-dependent Results in Storage Theory, by N. U. Prabhu,
1965; 48 pages. (London: Methuen & Co. Ltd., 8s. 6d.)

This is the first of a series, each member of which will consist
of a separate off-print of a review paper published in the
Journal of Applied Probability. The intention is to keep the
standard of exposition as simple as possible but to provide
up-to-date accounts of research done in particular fields.
This article by Mr. Prabhu has a fairly extensive list of ref-
erences and an index, and should be useful to anyone in-
terested in storage theory.

Storage models are a particular case of what is variously
described as queuing theory or inventory theory. Basically
they comprise a reservoir with inputs and outputs which may
be either random or controlled variables. Mr. Prabhu,
working with Moran and Gani in Australia, has been parti-
cularly interested in dams. Early work in this field was
concerned to extend the theory of queues, in which arrivals,
service and departures are usually in discrete quantities, to
the case where input at least is continuous; e.g. by rainfall.
Later developments have considered extensions to inputs
which are correlated over time, and to various types of con-
trolled release from the system. Interest has also developed
in various transient features, and in particular to the distribu-
tion of volume in the reservoir and of the so-called “wet
periods,” i.e. times during which there is anything in store
available for release.

Mr. Prabhu knows his field thoroughly and has made
some notable contributions himself to its development. This
article effectively covers work done in the last seven or eight
years. From the nature of the case, it is not a text-book and
has at times to quote results without proof or to condense
arguments. But it gives a very useful review of a rapidly
developing subject and will be very valuable to all those
interested in storage problems. M. G. KENDALL
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Journal of the Institute of Mathematics and its Applications:
Volume 1, Numbers 1, 2, edited by F. A. GOLDSWORTHY,
1965. (London: Academic Press, 120s. per volume).

The Institute of Mathematics and its Applications was
formed in 1964; of its two publications the Journal (which is
quarterly), is devoted to research papers while the Bulletin
(also quarterly), is principally for news. Two issues of the
Journal have now appeared ; the quality of production is very
high and the printing and format pleasing. The quality of
the articles fully matches this standard; the series begins
appropriately with an outstanding survey/expository article
on group velocity by the Institute’s first President, Professor
M. J. Lighthill, F.R.S.

Of the twelve papers (average length 16 pages), in the first
two numbers, six are on fluid mechanics (including MHD),
three on elasticity, one on electromagnetic diffraction, and
two only on statistical topics (stochastic processes and curve-
fitting). The concentration on classical applied mathematics
seems somewhat at variance with the declared policy of
treating ““all areas of the application of mathematics,” but
it would clearly be unfair to judge from two issues and no
doubt the newer applications in mathematical economics,
bio-mathematics, information theory etc., will in time receive
their due share of attention.

One hopes also that the editorial statement ‘“‘Especially
welcome will be papers which develop mathematical techniques
applicable to more than one field,” may give scope for articles
on applicable pure mathematics or applied mathematics in the
Continental sense, in which this country seems sadly backward
and in which members of the British Computer Society might

be greatly interested.
. F. M. ARSCOTT
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