Do-it-yourself software experience

By B. L. Neff*

This paper is based on a talk given to The British Computer Society in London on 4 May 1965.
It records experience in writing a series of compilers to accelerate the programming work of a

large commercial application.

My subject is software, and by that term I do not mean
programming in general, but only that phase of pro-
gramming of a “service” nature: compilers, executive
routines, sort programs, debugging devices and the like.
To further specialize my subject, I am with a Company
whose computer work is almost entirely in the “com-
mercial EDP” area, so my remarks will have only inci-
dental application to scientific programming problems.
Furthermore, I speak to you with the viewpoint of a
user of computing equipment, in a Company that looks
upon electronic equipment as a necessary, but not evil,
device for saving money and rendering better service to
our customers.

I think it important to describe what might be called
the “environment” of our installation. I have attended
computer meetings where apparent disagreements
between speakers could have been avoided if each party
had realized that the computer environment of the
other was such that quite different ways of solving
problems were separately correct, each in its own
environment.

The Metropolitan Life Insurance Company is the
largest Insurance Company in the world. Our assets
are exceeded only by those of the U.S. Bell Telephone
System, and we insure over 45,000,000 people in the
United States and Canada. We have a lot of records
to keep up to date, hence the situation could not be
more ideally suited to computer usage. We are in a
business whose only products are in paper form: policies
and cheques. So I would list environment condition (1)
as: a tremendously large potential computer application.

We started out in the electronic computer business in
1954, if one counts the installation of actual hardware
as the start; obviously many prior years of study were
necessary. Once the initial installation had proven
itself, the Company’s attitude of tentative experiment
gave way to a large flashing green light that said
“go-go-go.” It is now realized that potential savings
can be converted into real savings, and we are going
ahead as rapidly as possible. But our business is in the
nature of a public trust, and we cannot be rash. Hence
environment condition (2) is: Plunge ahead cautiously:
or Full speed ahead, but be careful.

Another environment condition is the fact that we
are now in our second go-around with a large-scale
system (first Univac I and II, then Honeywell H-800,
H-1800) and hope we have acquired some sophistication

in the process. Still another condition important to
mention is that we do not have too much trouble hiring
and retaining new people who are suited for training
primarily in the insurance-applications end of computer
work. The job market for machine-oriented pro-
grammers on the other hand is a bit unstable at times,
depending somewhat on the condition of government
contracts, new machines being announced, etc.

The job of programming insurance applications, with
emphasis on knowledge of company practices and pro-
cedures, will probably become a stepping stone toward
assignment in higher management positions. This
makes it possible for us to hire good people who may be
attracted by this prospect. Obviously the future of a
machine-oriented programmer, however good he is, is
more restricted in scope. Hence we have a need for a pro-
gramming language that bypasses machine complexities
and is problem-oriented.

Hardware now in use

The actual hardware now in use is pertinent to my
discussion. In 1960, Mr. John Finelli of my Company
addressed this group (Finelli, 1960) and gave our earlier
history of computer utilization, since 1954. In 1960 we
had reached the point of using three Univac II machines
on our New York premises, and renting time on two
others at outside locations. A fairly exhaustive study
was made in 1960 concerning our next ‘‘generation” of
machines, and the end result of a long series of meetings
was the choice of the Honeywell H-800. Two were
installed the following year, and at the present time the
New York Home Office contains two H-800’s and two
H-1800’s. Another H-1800 will be installed by July
1965. Each of these New York machines has 30 tape
drives and 32,000 words of memory. Two of them have
five Univac tape drives. Our San Francisco and Ottawa
Offices each have an H-800, with 10 tape drives and
16,000 words of memory.

Although it has little bearing at present on software
questions, I should mention, for the sake of completeness,
that we are well along the way to installing a country-
wide data-communications system, in the United States
only, to link 800 District (sales and service) Offices with
the New York computers. Ten districts should be
operating on this basis early in 1966. It is not a true
real-time inquiry system in the sense of instant response,
but rather a method of collecting and disseminating data

* Assistant Vice-President, Metropolitan Life Insurance Company, 1, Madison Avenue, New York, N.Y., U.S.A.

20z Iudy 61 U0 }sonB AQ $9BSGEE/L0Z/E/8/aI0NE/UIWOD W00 dNo"olWapese)/:SARY WO} POPEOJUMOQ

Software experience

daily, with daily data-processing of inquiries, etc., to
enable us to reply, when necessary, by the next day.
An H-1800 in New York will scan the country auto-
matically, with simultaneous sending and receiving on
multiple lines.

This concludes my discussion of the environment
conditions in the Metropolitan’s computer installation.

Early programming experience

To return to the software story: those of us who did
the original programming on Univac I in 1953 and 1954
started out being thoroughly indoctrinated with the
virtues of machine coding. In 1953 there wasn’t much
of anything else anyhow. In 1954 we were very fortunate
in getting a ‘“‘compiler,” produced at New York Uni-
versity by Roy Goldfinger. It amounted to what we
would nowadays call an assembler, in that it allowed
subroutines to be stored on a library tape, to be called
in by a programmer at assembly time. We recoded it
in our shop to add some features we thought desirable,
later recoded it again for Univac II, and it is still one of
the basic Metropolitan assembly systems for Univac II
programs. It is a sobering reflection on the fantastic
progress of computer technology in the last 10 years to
remember how avant-garde this assembly system
appeared to us in 1954, and what a great help it was in
our programming work; then to come back to the
present day, when an assembly system is taken for
granted, like a self-starter on an automobile.

A few years after our 1954 start, the first ideas about
using problem-oriented languages for coding were being
discussed, advocated, sneered at, and praised. We pro-
grammers thought these efforts quite impractical, but
our higher management saw them as rays of hope on the
horizon. Systems and claims for systems that used
actual English language words came into being: B-¢
Flowmatic, COBOL, FACT. We tried out the B-¢
system on our own machines. The early efforts at
implementing these languages on the small-memory
machines then available produced results that were such
that we had no trouble recognizing their impracticability.
But these systems had a point which was inescapable:
the country simply did not contain enough clever
machine-oriented programmers, or people who could
be so trained, to cope with the explosion of computer
programming that was occurring. So a few of us stopped
scoffing, and considered that we didn’t really object to
the general language approach of these new systems—
it was the implementation we didn’t like, i.e. the volume
of coding generated, and its efficiency in terms of running
time of the generated program.

First compiler

In 1959 therefore we decided to make up our own
English Language Compiler for the Univac II, designing
the language ourselves by considering real existing pro-
grams, and requiring it to handle everything we could
think of. Before the language was frozen, it was applied

202

to actual production runs, large and complex, to establish
its practicability. We were conscious at the time that
some new, as yet unknown, machine would replace
Univac II within a few years, and tried to keep the
language reasonably machine-independent.

This first effort in compilers in our shop was working
by the end of 1960, and the coding produced was not
bad. A basic decision was made during the implementa-
tion phase, which we have held to in our later compiler
work, and which I consider important: it was decided
that the efficiency of the coding produced was far more
important than the efficiency of the compiling process.
That is, we did not care whether compiling time was
fast or slow, but the object program produced had to
run fast, and had to use memory space economically.
The coding produced had to compare favourably with
direct machine-language coding by a human being,
although we realized it could never be quite that good.
At that time, and you can still see it today, claims of
competing compilers seemed to emphasize compiling
time exclusively: “Our compiler produced this program
in only three minutes, while the Brand-X compiler took
five minutes.”” The Metropolitan Univac Compiler took
about an hour, sometimes longer, to produce a full 2,000
word program. This is one of the reasons why I stressed
earlier in my talk the importance of considering the
environment in which software is used before evaluating
it. Our data processing activity features many recurring
jobs, few one-shot jobs. The extra time we take to
compile is more than recaptured once a job goes into
periodic application. Obviously a service bureau would
take the opposite point of view, and correctly.

Change-over period

The Univac compiler was given a fair amount of use,
but it came along at a late stage of our Univac 1I
experience. Most of the important Univac II work
predated the compiler, hence its value as a common-
language device for switching runs over to the later
Honeywell machines was small. When we transferred
our larger Univac II programs over to the H-800, we
played around briefly with some fancy ideas of how
to automate the process partially, but fairly quickly
concluded that it would be necessary to work directly
from Univac machine coding into H-800 English lan-
guage statements, and the job was done that way. One
of the fancy ideas was to write a program in English
language for Univac (working from the machine coding
of the program), compile it for Univac and test on
Univac that it produced exactly the same processing as
the original run, then recompile for the H-800 using the
same statements. This very quickly proved to be too
cumbersome, and the approach was dropped. Deloading
of Univac programs was finally done by having pro-
grammers translate Univac coding into English state-
ments acceptable to our Honeywell Compiler.

In retrospect, the real value of the Univac compiler
was in the experience we gained in producing it. Also,
we stopped being frightened by tales of 100 man-years,

20z Iudy 61 U0 }sonB AQ $9BSGEE/L0Z/E/8/aI0NE/UIWOD W00 dNo"olWapese)/:SARY WO} POPEOJUMOQ

Software experience

costs of $3,000,000 per compiler, etc., and found out
that we could do this type of work ourselves, at far less
cost. To paraphrase the title of a well-known movie:
we “learned to stop worrying and started to love the
Compiler.”

The do-it-yourself approach

I mentioned that the H-800 was picked as our next
generation computer at a series of meetings in 1960.
This decision immediately followed our first successes
with the Univac compiler, and these successes with the
compiler had the effect of our tending to minimize the
importance of evaluating manufacturers’ software in
selecting a machine. This discounting of software
enabled us to concentrate on studying the hardware
capabilities of the competing machines, looking at soft-
ware with the attitude that if it weren’t satisfactory we
would do it ourselves. This, incidentally, is the real
message I have for you in this talk: consider the do-it-
yourself approach on software in your own installation.
If the installation is small, such an effort will have to
be modest, though even a small effort may bring worth-
while rewards; if the installation is large and mature,
try it by all means.

When we had made a firm selection of the H-800 as
our next generation machine, we had about a year’s
grace before the hardware would actually arrive, time to
produce our own software or modify Honeywell’s. As
regards the English Language Compiler situation, the
decision to go our own way had really been made con-
currently with selecting the machine. We were pretty
well satisfied with the Univac English Language Compiler,
hence felt confident of our ability to extend it to the
H-800. COBOL for the H-800 was still a number of
years away. The FACT compiler system of Honeywell’s
did not, shall we say, strike a responsive chord at
Metropolitan—which is somewhat of an understate-
ment. It had a special character set, involved using
what we thought was an unnecessarily complicated
system of structuring data files, and featured frequent
relocation in memory of a program during a run, to
mention some of our misgivings. As a tool adapted for
our needs, we did not give it serious consideration. 1
should add to these remarks by saying that some
American installations have used FACT, and seem to
like it.

Consideration of available software

I will return to the compiler story later, but it might be
well to mention here three other aspects of H-800 soft-
ware which had to be evaluated. One was the ARGUS
assembly system, for converting mnemonic coding into
machine coding, and bringing library routines into a
completely assembled program. Another software
question, though not a program, was the Honeywell
convention system in regard to data tape layout, handling
of signs, rules regarding the handling of parallel-running
programs, etc. The third major question was the
Executive Routine.

203

The ARGUS assembly system appeared to be in good
working order, and although we did not want to use
all of its various features, the ones we needed seemed
satisfactory, so we decided to leave well enough alone in
this area, for a few years’ time at least. Much later, in
December 1963, we started work on a replacement for
it, and this is now coming into use in the Company.
The replacement, which we call “Mercury”, is much
faster, and has tighter controls.

The various Honeywell programming and data tape
conventions obviously needed more rigid definition at
Metropolitan, and I think this will always be true of any
manufacturer’s suggested conventions on any large-scale
machine in any installation. To borrow American base-
ball terminology, the ground rules adopted have to
depend on the stadium the game is played in. At
Metropolitan we have a positive passion for very com-
plete controls, to ensure that the chance of erroneous
computer results being sent to a policyholder is as close
to zero as it is humanly possible to make it. Part of this
feeling comes from the fact that we are closely regulated,
so that our procedures are scrutinized by various states’
insurance commissions. Another consideration was
that however completely we had examined the H-800,
only actual experience would tell us how reliable the
machine really was. (In retrospect five years later we
can say that the machine is remarkably reliable.) Still
one other reason for more extensive controls on Metro-
politan work is that we do not have the “safety in
numbers” situation that many smaller companies can
rely on. If the chance of some type of machine failure
going undetected is estimated to be one in a million, for
example, many installations may take the risk, willingly
and properly, of such an occurrence .once a year. We
can’t, because with our volume this low probability of
failure may be translated into a breakdown twice a day.
The end result of all these considerations was that we
made some significant changes in the Honeywell data
tape conventions, hence could not use the Honeywell
input-output packages, hence made up our own. We
also reversed the sign logic of the machine, so that
“machine-positive” meant “Metropolitan-negative”” and
vice versa; perhaps this last change confused more pro-
grammers than it was worth, although it hasn’t caused
any real trouble except in people’s minds, and had a
positive logical value. We found out later that the FACT
compiler system made the same sign logic reversal.

Executive Routine

I have mentioned the assembly system and the con-
ventions. The third non-compiler software article we
looked at was the Honeywell Executive routine. In a
computer that has the capability of running more than
one program at a time, the Executive Routine (some-
times called Executive Monitor) is a master program
that performs the necessary function of policing the
action of the other programs. It decides which sections
of memory are available for new programs, keeps the
human operator informed in regard to programs

20z Iudy 61 U0 }sonB AQ $9BSGEE/L0Z/E/8/aI0NE/UIWOD W00 dNo"olWapese)/:SARY WO} POPEOJUMOQ

Software experience

beginning and ending, finds and loads new programs,
etc. Honeywell’s Executive routine was available in
only one version, and this was geared to a much smaller
configuration of memory and tape drives than Metro-
politan had ordered. Honeywell’s system required pre-
planning of parallel running programs, in small-memory
machines, where there would not be very extensive
parallel running anyhow. With our larger memory and
larger number of tape drives, we wanted to make
extensive use of the parallel running possibilities of the
machine, and instead of pre-planning series of runs, we
wanted the Executive Routine to re-schedule the opera-
tion dynamically as runs finished, by examining a ““waiting
list” of jobs to be run when possible. With the sub-
stantial task we had already assumed of putting together
a compiler, we were in no position to take on this
additional programming task, but it appeared that the
specifications for this type of Executive could be drawn
up clearly enough so that the job could be farmed out.
A committee of four specified the logic of what we
wanted, and we called in an outside consultant firm to
do the job. Our own Executive Routine was working
and available a year later, when the machines arrived.

Temporary compiler for H-800

To return to the English Language Compiler situation:
we started immediately to work on an H-800 version,
that is, one to produce H-800 coding, but wisely decided
to program it for the Univac II. This had several imme-
diate advantages. First, we had a fluency with Univac II
language that we knew would take some time to develop
with H-800 language, and we knew how to debug
Univac programs well, with six years’ experience.
Second, we could test it out as we went, on our own
machines in our own shop, without getting into a queue
for time on the few H-800 machines then working, all of
which were outside our office. Third, about one-third
of the job was already done, since the preliminary syn-
tactical analysis in the working Univac compiler required
few modifications to serve the same purpose in a Honey-
well compiler. Of course, we knew it could not be a
permanent solution, but the fact that we intended to
phase out the Univac II machines only very gradually
made it a very acceptable solution.

I can’t resist pointing out that this decision, to imple-
ment an H-800 compiler on a Univac 11, is one that only
a user could have made, and is a good example of the
advantages, sometimes unexpected, of a computer user
furnishing some part of his software requirements him-
self. It was a slick way of getting work onto the new
machines quickly. It is entirely possible that our
inability to do this type of work would have set our
whole time-table back a year or more. One of the
many good points we considered about the H-800 was
its relatively early availability, compared with some other
machines we studied—this advantage might have lost
its appeal if we had not been confident that our own
staff would be adequately supplied with tools to exploit
the advantage of an early hardware installation.

204

This hybrid compiler was called the “Compromise
Compiler”—a misleading name perhaps, but we did not
feel that the name had much importance except to
identify it. We have never been very keen on tricky
names in the Metropolitan computer division. The
wholly H-800 compiler that eventually replaced the
Compromise Compiler really has no name at all, except
“The Compiler’—The Executive Routine is simply
called that, or sometimes ‘“Met-Exec.”” We marvel at
the ingenuity that other people display in coming up
with those wonderful acronyms like COBOL,
ADMIRAL, FACT, SOAP, and the like. We wonder
where they find the time for such research. Many
acronyms have such an ultimate flavour about them
that they seem to leave little room for improvement.
The original UNIVAC, for example, which is now care-
fully preserved in the Smithsonian Institution in
Washington, along with Lindbergh’s airplane, had a
name that meant “Universal Automatic Computer.”
Where can one go from there? Nor is this a peculiarly
American disease: I had pangs of envy and admiration
when 1 first heard about the great Nebula compiler in
Orion; that one deserved a prize. I suppose I can sum
up these parenthetical remarks by saying that we don’t
care what people call it, provided it works.

A few minor modifications in the compiler language
were made in adapting the compiler to the H-800.
These had to do with methods of identifying tapes, and
some related to the matter of running under the control
of an Executive routine. No changes at all affected the
processing language itself, and it was fairly easy to spot
and change Univac statements that required changing
in order to recompile on the Compromise Compiler for
the H-800.

Although the New York machines originally had
16,000-word memories, our smaller machines in San
Francisco and Ottawa, installed in 1962, had 12,000 and
8,000-word memories, and in order to be able to run
each other’s programs, we restricted H-800 program
size initially to 6,000 words of memory. This restriction
had the desirable effect of permitting parallel operation
to some extent, at least in New York. Where the
Univac Compiler took about one hour to produce pro-
grams restricted to the size of the Univac 2000-word
memory, the Compromise Compiler took from two to
three hours to produce an H-800 6,000-word program—
the correlation between time of compiling and memory
size of the compiled program was quite close. Later, in
1963, we doubled memory size on the New York
machines to 32,000 words each, and the San Francisco
and Ottawa machines were increased to 16,000 words
each, and at the same time we raised the permissible
size of a program to 12,000 words. This of course made
compiling time rather enormous on those few programs
that went to very large sizes, but it occurred at a time
when enough work had been transferred from Univac
to Honeywell to make such time available. The “pure”
Honeywell compiler (i.e. compiling runs on the H-800
for the H-800) went into operation in September of 1964,

20z Iudy 61 U0 }sonB AQ $9BSGEE/L0Z/E/8/aI0NE/UIWOD W00 dNo"olWapese)/:SARY WO} POPEOJUMOQ

Software experience

and the whole problem of excessive Univac compiling
time promptly disappeared. We had scrapped one of
our Univac II machines in May of 1964 (we tried to sell
it, but no one wanted it even as a gift), in order to provide
floor space for an H-1800, and it was a great relief when
the new compiler started operating four months later.
The risk of not having enough time to compile for new
trials being worked on during those four months was
not a real one, since we could have bought some time
outside—but this was not necessary, as it turned out.

During the years that we used the Compromise
Compiler, about 500 programs were produced by it,
and no other programming system had to be used for
regular production type work. Programmer confidence
in the system is very high, and has continued high with
the introduction of the newer all-Honeywell compiler.
One simple indication of this acceptance is the fact
that when bugs show in test sessions the normal reaction
is to examine the statements for errors first, not the
coding produced. Project leaders and managerial per-
sonnel above the programmer level are completely sold
on the system, and it is generally felt that the progress
we have made over the last few years would not have
been possible without the compiler.

Work started on the “pure”” Honeywell compiler about
27 months prior to its completion in September of 1964.
There was less urgency, except at the very end, and we
wanted to gather up all those tidbits of hindsight that
the two earlier compilers gave us, and really do a good
job. Rule: if you want a job done well, do it the third
time. After only one year of its development, the
partially completed compiler started to pay large divi-
dends, since its very complete and fast diagnostic section
was working by then. This enabled us to find pro-
grammers’ errors very rapidly on the H-800, then send to
Univac only those programs that were clean—this simple
step cut Univac compiler time requirements in half.

Language changes for the third compiler were confined
to liberalizations of some prior restrictions—there were
no changes that required rewriting older programs for
the new system. A king-size program that requires
12,000 words of memory can be compiled in less than an
hour—the average run is about 30 minutes. We are
now compiling about 20-25 programs per month, not
counting about twice that number per month of partial
runs that reveal programmer logical errors.

Features of latest compiler

Some of the features of our latest compiler may be of
interest. Half-way through a compilation an English
Language analyzer is produced, which lists the original
statements’ text, and shows all cross-references between
statements. This is valuable for making later program
changes. Lists are also given of the various files, data
nouns, storage areas and tables used in the program,
showing the statement numbers of all processing steps
that refer to each. If there are any errors in the program
this list is also present, and the compiler quits without
going further.

205

The Honeywell symbolic coding language, which the
compiler produces, contains a provision for inserting
“remarks” lines among the coding. The compiler uses
this facility in two ways: first, each small section of
coding, which corresponds to a clause of a statement, is
preceded by remarks that give the statement and clause
number, as well as the English text of the clause. Second,
the entire original text of the program is converted to
remarks lines that appear at the end of the program
listings. Having all this information in one package
helps program maintenance considerably.

Wider use possibilities

One of the suggestions made to me in connection with
this paper was to make some comments on the “case
for a tailor-made language.” 1 can’t do it because the
system is not a tailor-made language—it is a language
that is generally useful to any commercial EDP outfit
that happens to use the same equipment as we do. I
can think of only one verb in our compiler vocabulary
that is really tailor-made, and as it is optional, it does
not affect the general value of the language. In con-
nection with our communications project it is necessary
to print a bar-code at the bottom of our premium notices,
so that these may later be run through an optical scanner
at the District Office for transmission to the New York
computer center. This consists of five rows of small
vertical bars, in which each vertical combination of bar
or no-bar stands for a character in the scale of sixteen.
We have a verb known as BARCODE which sets this
combination up in storage for the printer. All of the
rest of the language is general, except of course that no
provision is made for hardware we do not yet have.

I was also asked to comment on the matter of ‘“‘com-
monality of language between machines.” We did
achieve this partially between Univac and the H-800,
with the minor exceptions I mentioned above, but in
the perfectly general case I think it rather impossible.
One could hardly hope to achieve commonality between
a machine whose main large storage was tapes and
another whose main large storage was a large disc file,
for example. Even between two tape machines, one
may run into irreconcilable differences in the character
set. I can recall one job that caused some trouble going
from Univac to Honeywell where the original Univac
logic depended in part on the fact that a Univac “space”
or “blank” is lower than a zero in the Univac collation
sequence. It happens to be larger than a zero on the
H-800, and as a result a new field had to be added to the
H-800 file design in order to accomplish the same pro-
cessing. Will we ever have a standardized character set
common to all machines? I doubt it.

Speed of object program

I mentioned earlier in this paper the preference we have
at Metropolitan for speed in the generated program that
comes out of the compiler, rather than speed of compiling
time, and I also pointed out that I did not think this
would hold true in other installations with a different

20z Iudy 61 U0 }sonB AQ $9BSGEE/L0Z/E/8/aI0NE/UIWOD W00 dNo"olWapese)/:SARY WO} POPEOJUMOQ

Software experience

environment. There is a related subject that comes to
mind: the frequently heard argument that the need for
efficient coding will gradually diminish as machines get
faster and faster, ergo one can tolerate sloppy compiler
generators. 1 feel quite strongly that no matter how
fast the internal computing speed of a machine becomes
(and we seem to be approaching a limit) it will always
be important to use it efficiently. Speed of processing
represents money, plain and simple.—If compiler A
produces programs that run twice as fast as compiler B
we save expense by using compiler A.—If another
machine is built three times as fast, will this justify
using the compiler B approach? Of course not—
Nanoseconds are just as important economically as
microseconds, if there are enough of them.

Machine-code routines

One aspect of commercial EDP compilers that is near
and dear to my heart concerns the “Own-coding” option.
Metropolitan may possibly lay claim to having produced
the only English Language Compiler that does not give
the programmer the option to go into machine coding
to do something ‘“‘special,” then return to generated
coding. Our attitude is that if the language has been
thought out and implemented properly there should
never be any such need—and if one looks upon a com-
piler, as we do, as a device that enforces a common
discipline among problem solvers, an option to use own-
coding will certainly operate to defeat this discipline.
Rare cases of real need arise now and then, which we
solve by simply adding some language facility to the
compiler. Imight add that putting an own-coding option
into the compiler would be rather simple—but we don’t
think we could live with the confusion it would produce.
Incidentally, we did have some actual experience with
something like this, on a different type of compiler. We
had on Univac an interpretive compiler, known as the
“worksheet program” which had the specialized aim of
automating actuarial calculations that could be expressed
and solved in terms of columns and lines of a calculation
worksheet. It worked very well on things like actuarial
life functions, where one expresses tabular formulae
that run down one column and up another, etc. One
day it occurred to me that we could put an own-coding
option into it, and I did, and let out the news. It was a
horrible mistake, because worksheet programs came into
being that were almost incomprehensible mixtures of
worksheet interpretive code and Univac machine coding.
There is an evil instinct in all of us to over-complicate
things—one might call it the “Chinese puzzle urge”: it
must be dealt with firmly.

Verbosity defended

A frequently heard criticism of English Language pro-
gramming is that it is too verbose in stating a problem.
Some suggest allowing one to write RD instead of
READ, or A instead of ADD. A similar complaint
has to do with our insistence on programmers attaching

206

meaningful names to data fields—instead of calling them
INSURANCE, COMMISSION, PREMIUM, the sug-
gestion is to allow something short, like Al, A2, A3,
on the grounds that the programmer will know what he
is doing, and why write all those extra letters? There
are several replies to this line of thinking:

(1) The redundancy in “ADD,” as compared with “A,”
is a valuable error-detection device, to guard against
some random key-punch error changing the meaning of
a whole processing step, without immediate detection.
If A stands for ADD, and S for SUBTRACT, how easy
is it for a careless operator to punch one instead of the
other? But mere carelessness will never give SUB-
TRACT instead of ADD. Very well then, but why
not allow SBTRCT instead of SUBTRACT? The
answer is that anyone can spell SUBTRACT, but why
need one take the time to look up SBTRCT in a list of
authorized abbreviations ?

(2) An English Language Compiler is not merely an
instrument for converting a problem-oriented language
into a machine-oriented language. It is also a com-
munication and documentation device, which allows
close supervision of programmers during the develop-
ment phase of a project, as well as providing for easy
transfer of programs from one group of programmers
to another. Where a program has been doing steady
production work for a year and now needs revision, use
of this type of compiler facilitates the job of refamiliariza-
tion. All of these advantages tend to drop in effective-
ness if there are special symbolics used whose meaning
is not readily obvious.

(3) In any event, no one programs at dictation speed,
or even writing speed. The amount of time it takes to
decide what to write is far greater than the amount of
time it takes to write it.

Error detection

Another aspect of EDP compilers worth commenting
on is the handling of errors—what action should the
compiler take when it finds one? Our attitude is that,
having found one error, the compilation process should
of course go on to find any others, but having finished
those parts of the compilation that deal with errors, the
compiler run should stop. We take the strict viewpoint
that any error, no matter how seemingly trivial, may
indicate collateral errors on the part of the programmer,
and we do not allow the compiler to make a presumptive
change, or omit that part, and continue. The advantage
of this in a large computer shop is the assurance one
has that test work time (after compiling) will not be
frittered away on a known-to-be defective program.
The attitude that calls for forcing things through, so as
to get some results at least, can be adopted in a small
shop, but not in one as large as ours. I suppose one
added virtue in our ““all or nothing’ approach is that it
probably encourages more careful preparation on the
programmer’s part.

20z Iudy 61 U0 }sonB AQ $9BSGEE/L0Z/E/8/aI0NE/UIWOD W00 dNo"olWapese)/:SARY WO} POPEOJUMOQ

Software experience

Conclusion

The most important thought I want to leave with you
is the do-it-yourself idea. I’ve made this plea in talks
to groups in the United States, and usually hear in reply
something like “Well, if we had your money . . .,” etc.
But there are many installations over there whose EDP
budget approaches or exceeds ours, and I think it would
be fine if some of them shook off their timidity. Nor is
it simply a question of money or size—there are all
possible gradations of the do-it-yourself principle—
even a very small outfit can profit by taking the minimum
step of adopting more rigid tape conventions for example
—I’m not advocating the whole hog or none at all.

Reference

Hence, to computer users I would say: try some do-
it-yourself software—you may find you like it. To com-
puter manufacturers, I would suggest that software for
new systems be set up in modular fashion, so as not to
handicap the user who wants to substitute his own ideas
here and there.

Acknowledgements

The author records his thanks to Mr. E. L. Willey
(Prudential Assurance Company, London) for helpful
suggestions regarding the subject matter of this paper,
and arrangements for the meeting at Northampton
College of Advanced Technology, London.

FINELLI, JOHN J. (1960). “Development of EDP Units,” The Computer Bulletin, June 1960, Vol. 4, p. 10.

Correspondence

To the Editor,
The Computer Journal.

Character recognition
Sir,

I would like to comment on the article, ‘“Character
Recognition,” by F. H. Sharman in your July issue.

Firstly, 1 consider that this paper has done a valuable
service in bringing out U.K. views on Character Recognition,
that have been dormant for some time, and that these views
can now fruitfully be discussed. However, these views, as
presented in the paper may be initially biased due to the fact
that organizations who expressed “‘no use foreseen” were
nevertheless included in the analysis of answers to the subse-
quent questions. For example, Table 2, Section b shows
7 out of 15 organizations having ‘“no use foreseen,” but
Tables 4, Section b, 5 Section b, and 7 Section b show many
more than 8 organizations’ answers being analyzed.

The authors have clearly met misunderstanding of errors
and rejections, and their clear-cut distinction in Section 10
is to be applauded. On the other hand, I feel they trod on
dangerous ground, in acting as judges, by declaring that
“The replies which indicated a rejection rate similar to that
experienced with punched cards was probably the most
realistic.”” By use of an intelligent total system with context
correction within a document, or within a batch, this may
be achievable; but considering a document reader by itself,
faced with marginal quality printing, then it would be
ambitious to suppose that it could match a card reader.

207

Regarding errors, the authors were themselves not wholly
consistent when they stated in Section 3, that “steps are
taken to eliminate these (input errors) with cards and paper
tape, so techniques have been devised to ensure accuracy in
Character Recognition.” Later in Section 10, they state that
the requirement for no misreads is a “state of bliss which
has never been achieved in any form of input.”

This goes to show how precise one’s wording must be when
writing on this subject . . . unless I am alone in my inter-
pretation of ‘“‘eliminate”.

Certainly any form of input mechanism has a finite error
rate and be it 10~5 or 1077 it is never zero; it is wishful
thinking to assume that integrated circuits, self adaptive
systems or what have you, will change this state of affairs.

The summary is quite fair, particularly in its final para-
graph. The only points that I would dispute in it relate to
proportionally spaced and easily read fonts. For the former
it is my view that people liking proportionally spaced fonts
really applaud the print quality since these fonts are almost,
if not always, used on electric typewriters with good class
ribbons. Further, if one is looking for an easily-read font
the ECMA B font is a very good candidate for this.

Yours faithfully,
J. BAULDREAY.
Rydal,
Heathfield,

Royston, Herts.
21 September, 1965.

20z Iudy 61 U0 }sonB AQ $9BSGEE/L0Z/E/8/aI0NE/UIWOD W00 dNo"olWapese)/:SARY WO} POPEOJUMOQ

