The gradual acceptance of a variety of

commercial English languages

By R. M. Paine*

This paper is based on a talk given at the L.F.I.P. Congress, New York, May 1965, a summary
of which will appear in Vol. 2 of the Proceedings of that Congress.

In Britain, computer users have not rushed to embrace
automatic coding for business applications, in fact they
have been in the past rather hesitant to try it at all.
There have been many programmers present at lectures
on the subject—but the realistic chief accountants, or
sceptical managers of the information services depart-
ment, have been reluctant to decide that all programs
in their computer department will be written in auto-
matic coding. It is fashionable to know about the
newest languages, but it is not so accepted actually to
use them on real business work—that is regularly
repetitive runs.

Short history of developments

What are the reasons for this hesitancy? The normal
well-known British reserve and suspicion of anything
new plays its part—even among the computer pro-
fession, who are considered innovators by other pro-
fessions. Also, perhaps, the fact that autocoding
languages—especially COBOL—spread from America,
created some native resistance. This resistance was in
spite of, or perhaps even because of, the fact that about
409, of the commercial computers installed in Britain
were American. British computer manufacturers had
been slow to provide assembly languages, let alone full
automatic-coding languages—although much early work
and many conjectures about autocodes, mainly scientific,
had taken place in the United Kingdom. (Brooker 1958;
Clarke and Felton 1959; Gill 1959.)

The machines installed in Britain—at least up to
1960-62—whether British or American in design, were
smaller on the whole than those sold in America, so
that there was less scope for higher level languages than
in America. The British user had to cope with quite
small stores, sometimes two-level stores, and fairly slow
speeds, and quite often no magnetic tape—in these
circumstances, the possibilities of automatic program-
ming were somewhat limited (Conference Discussion
1962). In 1955, when I started working on computers,
there were only about fifteen computers in the country.
The fifteen or so computers of 1955 increased gradually
to about 660 installed or on order by 1963; but in the
last two years the pace has quickened considerably and
there are now some 1,800 computers installed or on
order (Miller, 1965). These figures include replacement

* Eastern Electricity Board, Ipswich.

208

machines, however, and may be too large for the actual
number of computers that will be working. At least
1,150 of these, however, are in the 1401 class or smaller;
and I need not tell you that COBOL on the IBM 1401
or the card I.C.T. 1301 is hardly an attractive proposition.
So weaned on machine codes, the British users, even
when bigger faster machines became available, were
reluctant to go straight to languages such as COBOL.
In many cases they accepted in the early 1960’s the
idea of symbolic languages, such as I.C.T.’s T.A.S., as
a miraculous gift from heaven, though I believe American
users had enjoyed them in practice for several years,
and I remember using IBM’s “SOAP” in 1958 (SOAP
11, 1957).

Inefficiency

Also, quite rightly, the British user was concerned
with the inefficiencies of automatic coding in regard to

(i) storage space;
(ii) object running speed;
(iii) the large amount of computer time required for
compiling and de-bugging; and
(iv) the number of tape units required.

Alarming stories spread across the Atlantic about the
inefficiencies of early COBOL and other languages
(COBOL-60; Paine, 1960). In Britain, labour costs
compared to machine costs are probably much lower
than in America, so users were more prepared to use
programmer’s time rather than to use computer time
in what they would consider a most wasteful way. The
larger users, who might otherwise have thought of
experimenting, were on the whole too busy with every-
day bread-and-butter jobs such as invoicing, stock-
control and payroll. Many users probably found they
had been undersold in machine power and were struggling
to save a machine instruction here and a constant there
in order to get their program into storage, rather than
facing the luxury of leaving a compiler to allocate storage,
knowing they would have something in hand.

Compatibility and standards

British users were sceptical about compatibility right
from the first communique issued by the Department of
Defence on COBOL (COBOL-60). In Britain we did

20z Iudy 61 U0 }sonb AQ $8ESGEE/S0Z/E/8/3I0NE/UIWOD W00 dNo"olWapeoe)/:SdRY WO} POPEOJUMOQ

Commercial languages

not think compatibility was possible, nor did we need
it, since we did not have a massive investment in hard-
ware and so were not faced with an enormous cost of
reprogramming. - Many people were not contemplating
changing their machige, and those that did were in the
main changing from a two-level card machine to a one-
level magnetic-tape machine which required a change in
system anyway. In contrast to the U.S.A., there was
not a large IBM market to capture. Thus there was
little drive to standardize on one language—in fact
within the British Computer Society, the study group
on automatic coding in the early 1960’s was almost an
anti-COBOL, anti-standardization group (Willey et al.,
1961a; Willey et al., 1961b; Ellis, 1961). This lack of a
standard or acceptance of COBOL was helped by there
being several fairly small British manufacturers, who, as
they got prodded into autocodes, developed a language
for their own machine—they were not concerned
whether such a language would run on other machines,
or even on other models that they themselves produced.
With so many manufacturers it was difficult to invest the
large sums required to produce fully comprehensive
software—the market for each model was too small
really to recover the costs of the development of
compilers (Paine, 1962; D’Agapeyeff, 1962). Thus
many source languages appeared—some had only a
short life—and there still are, as indicated in my title,
a variety of commercial languages in Britain.

Current position

In the last couple of years things have changed—I
might almost say “‘improved”—in the United Kingdom.
Mergers among computer manufacturers have given
greater financial resources to develop comprehensive
software—including operating systems—and at the same
time presented a larger market for a particular model
which might be large enough to recoup the costs of
software. Experience of writing earlier compilers has
given manufacturers greater confidence in avoiding
pitfalls, and they now advertise hard about the auto-
codes they can supply. Users have seen from America
that performance of compilers has improved (Cowan,
1964), and at the same time, the size of store in use
or on order in Britain has increased sufficiently to allow
users to experiment, since 8K to 16K words are now
fairly common. Many users now make it a condition
of purchase that the manufacturer can supply an auto-
code, even if they have no intention of using one, since
it is said to be the hallmark of an advanced manu-
facturer. Some manufacturers are also able to display
their compilers working at almost the same time as they
demonstrate their hardware, so users do not have to buy
a pig in a poke and live on promises for the first two or
three years of the installation. Some professional pro-
grammers have now advanced to the position of managers
in their companies, and are showing themselves willing
to make a far-sighted decision to use autocoding now,
even if all its benefits will not be reaped until the next
generation of compilers and machines.

D

209

So we have a gradual acceptance of autocoding—
though still only a very small proportion of users write
in autocodes (D’Agapeyeff, 1965). After that short
history, I should now like to talk about the variety of
languages offered and used—excluding those offered by
American companies and concentrating on those
supplied by British companies.

Mergers

Through mergers, the two largest British computer
groups are International Computers and Tabulators,
and English Electric—Leo—Marconi. I.C.T. was
formed by successive mergers or take-overs of Powers—
Samas, Hollerith, E.M.I. Electronics, and Ferranti—
and L.C.T. also sell machines made by R.C.A. and
Remington Rand. So you can see there is a fine mixture
of derivations, languages and products in that collection
—almost as rich a fusion as the development of the
British or American nation itself.

English Electric—Leo—Marconi is not quite such a
mixture. English Electric’s Computer Department took
over the computer interests of J. Lyons & Company
Ltd. Lyons were the first firm in the world to have an
electronic office, in February 1951, and they then pro-
duced and sold computers under the name of Leo*
Computers. English Electric have lately moved their
computer interests into their Marconi subsidiary, who
also have had some computer developments, mainly
military.

CLEO

Probably the commercial autocode most widely used
in Britain today is CLEO, standing for Clear Language
for Expressing Orders (Thompson, 1962; CLEO, 1961).
This was developed by Leo Computers, for their Leo III
and 326 computers, before their merger with English
Electric. The Leo III and 326 are large, fast, time-
sharing machines, and about fifty of them have been
sold throughout the world. They can be compared with
the Honeywell 800 or 1800 and the IBM 7040 or 7090.

CLEO was written specifically for Leo’s own machines
and did not seek to be a standard or to be run on other
computers. Since CLEO was started fairly late in the
game—mid-1961—it was able to benefit from -the
previous discussions on COBOL, and it is obviously
influenced by work on other source languages. The aim
appeared to be to start with a fairly simple language
and set of facilities, and then build it up by successive
issues of a revised compiler. They have, 1 think, been
successful in this object. In September 1963 the first
formal demonstration of CLEO took place (CLEO,
1963), at which a source program was compiled and the
object program run; this is quite a fast rate of progress
in developing the language and compiler. The first user
installation was in February 1964 at the Board of Trade.
At the moment there are about 25,000 instructions in
the compiler. An average efficiency of about 859, is

* Lyons Electronic Office.

20z Iudy 61 U0 }sonb AQ $8ESGEE/S0Z/E/8/3I0NE/UIWOD W00 dNo"olWapeoe)/:SdRY WO} POPEOJUMOQ

Commercial languages

claimed, though this, of course, varies with the type of
job done, and the measure of efficiency is a comparison
with its symbolic code called ‘““Intercode” rather than
machine code. The speed of compilation is given for
Leo 326 as a basic four minutes plus 100 lines of CLEO
statements a minute, and the 100 lines produce an
average of 1,000 machine code instructions—thus the
expansion factor is 10.

Of the first 30 customers of Leo III and 326, at least
25 are using CLEO to some degree, and some, such as
the Board of Trade and the General Post Office, will
do all future programming in CLEO. This must be a
very high percentage use of an autocode by the customers
of any computer manufacturer. The proportion of
CLEO programs to all programs written by users for
the Leo III, 326 range is much lower—some 309, to
409,, which indicates that many users may only experi-
ment with CLEO, rather than write all their everyday
running jobs in it. The language is used in Australia
and South Africa, as well as in Britain.

The number of people used to write the compiler seem
quite small—from seven to ten people at various stages
of its development. It is a smaller language than full
COBOL or N.P.L. in that its statements are less wordy,
it has fewer facilities (though it covers those in Compact
COBOL), there is no report writer or sort command,
only five character data names are used (since that is
the size of the Leo word), and very few options are
allowed, i.e. there is normally only one way of expressing
a statement. To give an example of its fewer functions,
there are no verbs for “Add”, “Multiply” or ‘“Subtract”,
instead the general expression or formula is used, e.g.

Y+ Z

SET X = E

The configuration required for compiling is the
minimum size of Leo III, that is two divisions of store
(each of 4,096 words), four magnetic-tape units, a printer
and a paper tape reader.

The first three issues of the compiler have now been
delivered and the fourth issue was due for April 1965.
A short list of some of the things in issue four will
indicate the present position of the language and show
its fairly slow but steady progress. CLEO first compiles
into Intercode and then to machine language. Pre-
viously these were on different systems tapes, causing a
delay in operation, but now the second translation is
on the back of the CLEO compiler tape so there is
no operational delay in the full compiling process.
Issue four permits the use of subroutines and functions
with parameters; previously there were no parameter
calls. More packing is permitted on magnetic tape,
since

(a) previously all fields had to occupy a multiple of
five characters even if only one character long;

(b) the overhead of two control words per record is
greatly reduced;

(¢) longer blocks of up to 1,000 words are permitted.

210

Nestings of subscripts is now permitted. Suppression
of zeros can be controlled by the programmer. On the
testing side, amendments to trial data or dump points
may be made without recompiling the whole program.

Future issues are planned, including allowing a simple
magnetic tape layout of one record to a block.

There is no scientific compiler on the Leo machines,
and CLEO performs both scientific and commercial
work, though mainly it has been used for commercial
applications, and issue three introduced floating-point
commands, though recursive functions are still not
allowed.

CLEO

Example: A
WEEKS -+ EXTR
SET RATE = ——"L65URs

. .Expansion: 10 : 1
Speed: 100 lines a minute
Minimum machine: 8,000 words, 4 tape units

Fig. 1

Achievement and the future

On the whole, CLEO has done well on its rather
limited canvas, and its sponsors have not made the
mistake of being too ambitious. At times the lack of
manpower concerned with the compiler has worried
potential purchasers of the machines, but perhaps a
small team has proved beneficial in the end.

What the future holds for CLEO is uncertain. It may
be that English Electric’s new range when it appears
will not use CLEO, and the machines may not be similar
to the Leo machines. This trap of non-compatibility
through lack of an agreed standard is very prevalent
when a merger takes place. English Electric, however,
have implied that they will not leave CLEO users in
the lurch, but have not specified how this will be done.

TALK

English Electric, on their pre-merger series of
machines, had not really launched and implemented a
full-scale commercial language of their own. Their
KDP10 (the RCA 501), of which ten were installed,
offered R.C.A.’s COBOL, but apart from their service
bureau and two other users, there was not much interest
shown over a period of three to four years. Because
of the R.C.A. connection, perhaps the next development
may be with the SPECTRA range. For their own
machines, the KDF6 and the KDF9, English Electric
have introduced a language called TALK (TALK,
1964). This language is again to do both scientific and
commercial applications, but is more biased to scientific
work than CLEO. TALK has not yet been released to
users; for the KDFG6 it is undergoing field trials within
English Electric, and for the KDF9 it is in its early
stages of testing. The KDF9 is a large scientific com-
puter, and the KDF6 is a medium-size general-purpose
machine, so there are not likely to be many commercial
users among the combined total of about 40 machines

20z Iudy 61 U0 }sonb AQ $8ESGEE/S0Z/E/8/3I0NE/UIWOD W00 dNo"olWapeoe)/:SdRY WO} POPEOJUMOQ

Commercial languages

installed or on order. Also, English Electric have
implemented ALGOL for the KDF9, so most of their
users who want a higher-level language will be using
ALGOL.

The development of TALK started in March 1962,
and by October 1963 there were fifteen people working
on the two compilers. The minimum configuration
required for compiling on the KDF6 is 8,000 triads of
store (each of 18 bits), paper tape input and output, a
monitor typewriter or line-at-a-time printer, and three
magnetic-tape units. The compiling speed is quite slow
at about three to four statements a minute. There is
no ALGOL or other automatic-coding language for
the KDF6, and it is said that it would not be possible
to implement full COBOL sensibly on the machine,
though Compact COBOL would be more sensible.
This gives some idea of the power and size of TALK.

The minimum configuration required for compiling
on the KDF9 is 12,000 words of 48 bits, paper-tape
input and output, a monitor typewriter or line-at-a-time
printer, and three magnetic-tape units. The compiling
speed is not yet known but it is estimated that it will
be about 50 statements a minute. The expansion factor
is 1 to 5. As well as two versions of ALGOL, users of
KDF9 can look to FORTRAN and to Mercury Auto-
code, so the scientific user is well catered for.

TALK does not really have full input/output editing
facilities such as zero suppression or sterling format,
and there is not a large measure of data description since
you manipulate the data as you want it.

TALK (KDF9)
Example: T
ACCEPT RATE AND HOURS AND NUMBER AND NAME
(Reads fields of data from paper tape input)
Expansion: 1 : 5
Speed: 50 lines a minute
Minimum machine: 12,000 words, 3 tape units

Fig. 2

Future prospects

With the merger it may be possible that TALK will
not be generally released, and that English Electric—
Leo—Marconi will concentrate on software for a new
range of machines. This is because the more languages
they release now, the more translators they will be
committed to producing for any new machines and
languages that they develop.

NEBULA

I.C.T., the largest of the British computer manu-
facturers, have several commercial autocoding languages
as a legacy of their past, and it will be interesting to see
how they settle competing claims.

“NEBULA,” standing for Natural Electronic Business
Users Language, is one of the most comprehensive
commercial higher-level languages in the world—with
far more facilities than COBOL (Braunholtz et al., 1961

211

NEBULA). It was developed by Ferranti Ltd. for their
Orion series, of which some fifteen machines have been
ordered. The Orion, however, is probably not now
regarded as a front-line product although users say that
it has an excellent basic order code, exploited by
compiler writers and keen basic programmers. Ferranti
set out to produce a language for a specific machine
rather than to challenge COBOL as a standard. In
particular NEBULA was to satisfy the peculiar input
requirements of several large companies, mainly insur-
ance companies, to read in vast punched-card files
coded in many different ways and with a wealth of
over-punching built up over the passing years. Here
indeed was a case of users specifying exactly what they
wanted, and each new user seemed to want something
slightly different, so that for some time the specification
of NEBULA seemed to expand every quarter. Ferranti
had wanted an open-ended language in contrast to
COBOL, but I doubt if they thought at the outset that
it would be as open-ended as it turned out to be before
it was actually working (Rousell, 1962). The NEBULA
compiler probably represents the biggest manpower
investment in software in the British computer industry—
some 75 man-years. Started in November 1960 it was,
like most pioneer languages, late, and was not issued
in its first compiling form until September 1964. About
a year earlier than this the syntax-checking pass had been
available. This September 1964 form omitted certain
card input/output and certain obscure procedure
descriptions, but did allow an amount of compiling to
take place. Little testing of object programs, as opposed
to compiling, occurred, however, until the fuller issue in
March 1965.

NEBULA includes a sorting routine which can be
used also by programmers in basic language or EMA,
after setting up packed keywords for each record in
accordance with certain conventions: this facility has been
widely used by Orion owners since mid-1964; one user
states that he can now complete in three days (with
magnetic tape) sorting and tabulating routines for an
extensive monthly Sales analysis which previously
occupied three sorters and tabulators with summary
punches for the greater part of three weeks.

NEBULA
Example: -
IF OVERTIME 30 THEN PERFORM ERROR PROCEDURE
OTHERWISE GO TO SECOND STAGE
Expansion: 1 : 6 (approx.)
Speed: 3 or 4 statements a minute
Minimum machine: 8,000 words—Core, 32,000 words—Drums,
5 tape units
Fig. 3

I.C.T. say that full use of the language is now possible.
The speed of compiling is slow, about three statements
a minute, but I.C.T. feel this can be increased signifi-
cantly in future editions. So far they have concentrated
on getting the compiler working and putting in as many

20z Iudy 61 U0 }sonb AQ $8ESGEE/S0Z/E/8/3I0NE/UIWOD W00 dNo"olWapeoe)/:SdRY WO} POPEOJUMOQ

Commercial languages

facilities as possible. The minimum size of Orion for
compiling is 8,000 words of core store, two drums each
of 16,384 words, five magnetic-tape units, a line printer
and a paper-tape punch. There is as yet little information
on the efficiency of the language. There are about five
users of NEBULA in the United Kingdom, two in
Sweden and one in South Africa; and some compiled
programs have reached over 30,000 machine code
instructions. The compiler itself is very large and
contains about 250,000 words—about the same as
FACT (Clippinger, 1962). It was written in its own
special autocode, and the compiling process did not go
via the assembly language but resulted in machine code
direct. Some users who had originally planned to use
NEBULA re-wrote some of the programs in machine
language when they found they had to wait rather a
long time for the compiler.

NEBULA’s future

I.C.T. have about 500 programmers on their staff—
though only about 159%, are working on autocodes. The
new I.C.T. range—the 1900 series, which is roughly
equivalent to the IBM Series 360 and probably available
earlier—has now well over 150 orders, and two or three
have already been delivered. This is the biggest order
book that any British computer manufacturer has built
up in under a year, but NEBULA is not (in early 1965)
one of the languages offered on the seven machines in
the 1900 range. Of course if it does prove very satis-
factory in practice it could be added to the list of 1900
languages. 1.C.T. will, however, have the problem of
assisting NEBULA users on Orion to reprogram when
and if the Orion range ceases. Seventy-five man-years
cannot be lightly thrown away.

Compact COBOL

For the 1900 range I.C.T. are concentrating on
Compact COBOL (Codasyl, 1964; A.S.A., 1965), that
is a sub-set of full COBOL without complicated “IF”
statements or formulae. This is, I believe, the first time
that a British firm has standardized on this American
standard. There are so many versions of COBOL at
large today that it is best to specify which COBOL you
mean by preceding it by the machine concerned.
I.C.T.’s version of Compact COBOL is slightly larger
than the Codasyl Committee’s definition, in order to
make it compatible with the COBOL implemented for
their earlier 1301 and 1500 computers, which will be
discussed later. The 1900 compiler is not written yet
but is due for mid-1966.

1900 COBOL will be the first compiled into the
interim phase of I.C.T.’s symbolic language called
PLAN (PLAN, 1964), and then assembled by the
PLAN translator. All the autocodes on the 1900 will
first be compiled so that they can enter the PLAN
translator. The de-bugging of 1900 COBOL is to be at
source-language level, since I.C.T. claim the recom-
pilation speed is so fast that this will be the most

212

efficient method of testing and making alterations. The
estimated time for compiling COBOL on a 1900 with a
two-microsecond store of size 8,000 words of 24 bits,
is 7 minutes for 500 program cards, and 35 minutes for
2,000 program cards. These times are considerably
reduced by having a 16,000-word store—being 4 minutes
and 11 minutes respectively—thus the size of the store
makes a large difference to the compiling time. The
minimum size of 1900 for compiling is roughly 8,000
words of core store, of which 5,500 words are occupied
by the compiler and the rest by Executive. Also
required are four magnetic-tape units, a line printer and
a paper-tape reader or card reader. The expansion
factor is estimated to be one COBOL statement to five
machine instructions. No figures are yet available on
the efficiency, but the aim is for 90%. I.C.T. plan to
add to 1900 COBOL, random-access commands, and a
sort command.

1900 COMPACT COBOL
Example:
PERFORM DISCOUNT

I

DISCOUNT
MULTIPLY PRICE BY 0-02 GIVING DISC.
SUBTRACT DISC. FROM TOTAL
Expansion: 1 :5
Speed: 125 to 150 lines a minute
Minimum machine: 8,000 words, 4 tape units

Fig. 4

On their earlier 1300 and 1301 series, of which some
200 have been sold, I.C.T. offered “RAPIDWRITE”
which was really a minimal version of COBOL, using
pre-printed and pre-punched cards rather than coding
sheets to help cut down the verbosity of COBOL
(Humby, 1962). The first version did not turn out to
be very efficient, and you need a large amount of desk
space to see all the program cards at once and hence
the flow of your program, especially when making
alterations. Later versions are said to be more efficient.
There are only about five customers using RAPID-
WRITE on the 1301, but the 1900 Compact COBOL
compiler can accept RAPIDWRITE input, and I.C.T.
think it is a worthwhile project.

Compatibility among 1.C.T. machines

Required COBOL 61 (COBOL 61) plus some options
is working on I.C.T.’s 1301 and 1500, though the options
are not always the same on both machines. The 1301
compiler was developed by 1.C.T., and the 1500 com-
piler by R.C.A., since this is the British name for the
RCA 301—hence the reason for certain differences in
source language and compiler techniques on the two
machines. There are some thirty 1500’s (out of the

20z Iudy 61 U0 }sonb AQ $8ESGEE/S0Z/E/8/3I0NE/UIWOD W00 dNo"olWapeoe)/:SdRY WO} POPEOJUMOQ

Commercial languages

total of about 130 sold) in South Africa, Central Africa
and Australia, and about 20 of these installations use
1500 COBOL because of the shortage of programmers
in those areas. The language is said to work very
well but the compilation may take two hours or more.
I.C.T.’s experience of 1301 COBOL and 1500 COBOL
has lead to the development of 1900 COBOL with its
emphasis on making the language as simple as possible,
cutting out a lot of options and permitting compatibility
at the highest possible common level, though this level
may be fairly low. But I.C.T. have now announced a
second phase including facilities more akin to 1500
COBOL in a fuller version of 1900 COBOL. 1.C.T,,
like American firms, are now facing the problem of
compatibility (Share Committee, 1958). Though there
have been relatively few autocode users among their
330 sales of the 1500, 1300 and 1301, they wish to make
it possible for autocode users to change to the 1900,
especially as COBOL users tend to be the more forward-
looking firms who are more likely to make an early
change to the 1900 series. I.C.T. state that it will be
possible to write and compile a program in Compact
COBOL or RAPIDWRITE on the 1301, and then have
a fully tested program ready for compilation by the
1900 Compact COBOL compiler.

The 1900 series will also have FORTRAN 1V, and a
paper-tape version of FORTRAN II is already working,
though the magnetic-tape version is still being written.
Extended Mercury Autocode (EMA) will also be
available—this is a scientific language quite common in
the United Kingdom (Brooker, 1958)—and work will be
started on an ALGOL compiler.

Atlas commercial language

I.C.T. also have a very large computer developed by
Manchester University with Ferranti Ltd. called Atlas
(Kilburn et al., 1961 ; Howarth et al., 1961). At present,
they do not seem to be offering any commercial auto-
code on this—neither COBOL nor NEBULA. But one
user of Atlas—the Institute of Computer Science
(London University)—is developing the Atlas Commer-
cial Language—ACL. This again seems to owe a lot
to COBOL and ALGOL, though the intention is to
make a functional language rather than a procedural
language. For instance, its authors wish to say ‘Print
(A + B — C)” in one command, rather than doing the
arithmetic work in one part of the program and printing
the results in another part. This feature is not in the
compiler at present, since only a sub-set of the ultimate
intentions have been developed so far.* The compiler
is working, but up to a short time ago no complete
suite of programs had been fully developed. The com-
piler took only three people a year to write—which must
be one of the smallest investments in autocodes
anywhere in the world. The “Compiler Compiling
Language” of Brooker and Morris (Brooker et al.,

* The Print (Arithmetic Expression Result) feature is available
also in Extended Mercury Autocode.

213

1963) was used to write ACL, and the source language
is compiled direct into machine language without going
through any intermediate phase of an assembly language.
De-bugging is done in the source language.

At the moment ACL seems rather limited for large
commercial jobs, since it has been implemented for only
paper-tape input not punched card input. There are no
reserved words but key words are underlined—this is
all right for paper-tape input but makes it very difficult
to punch the language into cards. This seems to indicate
poor research on behalf of the authors as to what
commercial firms actually use for their program input
media, and tends to throw doubts on whether their
other facilities are any closer to the needs of the business
programmer.

BABEL

There are, of course, other commercial languages
produced in Britain which have not been discussed in
this paper (Cormack, 1962; Cormack, 1965; Barron,
1963). ACL also seems to add one more language to the
tower of Babel of commercial automatic-programming
languages in the United Kingdom. This in many ways
seems an unsatisfactory situation for users and manu-
facturers alike. No customer wants the expense of
rewriting all his programs in a new language when he
invests in a more modern machine. No manufacturer
wants the expense of developing compilers for all his
rivals’ languages (and his own) to attract their old
customers.

Operating systems

Operating systems were also out of favour with
British manufacturers for a long time, it being thought
that it was sufficient to allow each programmer to
operate his program in the way he wanted. This not
only pleased individual programmers developing their
routines but saved manufacturers from having to invest
large sums in the writing of the software to give a
standard operating system. But the advent of time-
sharing machines and many different languages has led
British manufacturers to introduce operating systems
(Howarth, 1962; Cloot, 1965; Bouvard, 1964). On the
1900 series the full operating-system software will only
be offered on the larger, faster machines—that is the
1906/7 (1-25 or 2-25 microsecond store). The size of
the program is not yet known since it has not been
finished, but it is expected to be about 20,000 to 30,000
words, including the use of 9,000 words of core storage,
and the rest on drums or discs. 1.C.T. feel that a core
size of 32K words will be required to take advantage of
a full operating system. The features that are planned
for the 1906/7 operating system include:

(a) Store a list of requests for jobs.

(b)) Amend the list of jobs, including modifying
parameters.

+ Nebula and EMA programs for Orion and EMA programs for

Atlas are being punched into S-track or 7-track tape by all users
currently.

20z Iudy 61 U0 }sonb AQ $8ESGEE/S0Z/E/8/3I0NE/UIWOD W00 dNo"olWapeoe)/:SdRY WO} POPEOJUMOQ

Commercial languages

(c) Initiate jobs when storage and peripherals become and 326 also have an operating system which has many
available. similarities to the 1900 series, and this is already running
(d) Adjust priorities to optimize overall throughout. successfully (Lewis, 1965).

(e) Store temporarily input and output data for a job
on a file-storage medium selected by the operating
system, or on a device allocated direct by the
programmer. .

(f) Suspend jobs if they exceed allocation of running
time or output volume.

(g) Time automatically each program for charging
purposes.

(h) Handle several source languages and call in the
correct compiler from the library.

(i) Allow multiple on-line consoles.

Conclusion

In conclusion it can be said that the United Kingdom
users and manufacturers have reached a very similar
situation to that in the U.S.A.—operating systems and
autocodes are now available, and problems of com-
patibility or moving from one machine to the next are
becoming more important. Probably less than 5%, of
British users, however, write in commercial autocoding
languages. Because of the history of the computer

Similar systems have already been written and are market there are many commercial English languages
working for I.C.T. Orion (OMP, 1964) and Atlas available, and it could be in the interests of the users
(Howarth, 1962) and the lessons learnt on them (some- and of the two largest manufacturers (I.C.T. and English
times painfully) are being used for the 1900 operating Electric—Leo—Marconi) if a standard could be found,
system (Heatherington, 1965). thus limiting everyone’s investment. Since there is little

The Orion Monitor Program is now very successful sign that the standard will be COBOL, perhaps it will
and is proving how useful such a system is.* Leo III be N.P.L. or to give it its new name PL/I (PL/I, 1965).

* It occupies 512 words core and some 7,500 words drum on most Orions.

References and Bibliography

AS.A. (1965). X3.4 COBOL Information Bulletin No. 6, COBOL Standards, American Standards Association, May, 1965.

BARRON, D. W, et al. (1963). ““The Main Features of CPL,” The Computer Journal, Vol. 6, p. 134.

BoUVARD, J. (1964). “Operating System for the 800/1800,” Datamation, May, 1964, p. 29.

BrauNHOLTZ, T. G. H,, et al. (1961). “NEBULA—a Programming Language for Data Processing,”” The Computer Journal,
Vol. 4, p. 197.

BROOKER, R. A. (1958). “The Autocode Programs developed for the Manchester University Computers,” The Computer
Journal, Vol. 1, p. 15.

BROOKER, R. A., MAacCaLLuMm, I. R., Morris, D., and RoHL, J. S. (1963). “The Compiler Compiler,”” Annual Review in
Automatic Programming, Vol. 3, p. 229. Published by Pergamon Press.

CLARKE, B., and FELTON, G. E. (1959). “The Pegasus Autocode,”” The Computer Journal, Vol. 1, p. 192.

CLEO (1961). CLEO, Leo Computers Ltd., November, 1961.

CLeo (1963). ““Practical Implications and Current Development of the CLEO System,” Demonstration for Leo Users
Association, Leo Computers Ltd., September, 1963.

CLIPPINGER, R. F. (1962). “FACT,” The Computer Journal, Vol. 5, p. 112.

Croor, P. L. (1965). “What is the use of Operating Systems? The Computer Journal, Vol. 7, p. 249.

CoBoL—60. Report published by Department of Defense, Washington D.C. (April 1960).

CoBoL—61. Report published by Department of Defense, Washington D.C., 1961.

CopasyL (1964). “COBOL—Preliminary Edition (1964),”” Conference on Data Systems Languages.

CONFERENCE Di1scuUssION (1962). *‘Conference on Automatic Programming Languages for Business and Science,”” The Computer
Journal, Vol. 5, p. 121 and p. 170.

CorMACK, A. S. (1962). ‘‘Early Operating Experience with Language H,”” The Computer Journal, Vol. 5, p. 158.

CorMACK, A. S. (1965). “Inter-action between user’s needs and language—compiler—computer systems,” The Computer
Journal, Vol. 8, p. 8.

Cowan, R. A. (1964). “‘Is COBOL getting cheaper?”’ Datamation, June, 1964, p. 46.

D’AGAPEYEFF, A. (1962). ‘“‘Current Developments in Commercial Automatic Programming,”” The Computer Journal, Vol. 5,
p. 107.

D’AGAPEYEFF, A. (1965). “‘Software in Europe,” Datamation, May, 1965, p. 31.

ELLis, P. V. (1961). “COBOL”, The Computer Bulletin, Vol. 4, p. 144.

GEARING, H. W. (1961). “The use of Pegasus Autocode in Some Experimental Business Applications of Computers,” The
Computer Journal, Vol. 4, p. 30.

GiLL, S. (1959). ““‘Current Theory and Practice of Automatic Programming,” The Computer Journal, Vol. 2, p. 110.

HEATHERINGTON, G. A. (1965). “What is an Executive Program?”’ The Computer Bulletin, Vol. 8, p. 139.

HowARTH, D. E., et al. (1961). “The Manchester University Atlas Operating System, Part II User’s Description,”” The
Computer Journal, Vol. 4, p. 226.

HowarTh, D. E,, ef al. (1962). “The Atlas Scheduling System,” The Computer Journal, Vol. 5, p. 238.

Huwmsy, E. (1962). “Rapidwrite—a New Approach to COBOL Readability,”” The Computer Journal, Vol. 4, p. 301.

214

20z Iudy 61 U0 }sonb AQ $8ESGEE/S0Z/E/8/3I0NE/UIWOD W00 dNo"olWapeoe)/:SdRY WO} POPEOJUMOQ

Commercial languages

KiLBURN, T., et al. (1961). “The Manchester University Atlas Operating System, Part I Internal Organisation,”” The Computer
Journal, Vol. 4, p. 222.

Lewis, J. W. (1965). “The Management of a Large Commercial Computer Bureau,” The Computer Journal, Vol. 7, p. 255.

MILLER, J. T., et al. (1965). “Comment,” Computer Survey, Vol. 4, p. 123.

NEBULA. “‘A programming language for Commerical Data Processing,” Manual published by I.C.T. Ltd.

OMmp (1964). “ORION Monitor Program,” Data Processing, November-December, 1964, p. 318.

PAINE, R. M. (1960). *“Automatic Coding for Business Applications,” The Computer Journal, Vol. 3, p. 144.

PAINE, R. M. (1962). ““Waiting for COBOL,” Automatic Data Processing, Vol. 4, p. 21.

PL/1.(1965). - I.B.M..Operating System|360. PL|I Language Specification, I.B.M. Systems Reference Library, File No. 5360-29.
Form C28-6571-0, 1965.

PLAN (1964). PLAN Training Manual—1900 Series, 1.C.T. Ltd., Technical Publication 3144, 1964.

ROUSELL, A. R. (1962). ““A Progress Report on NEBULA,” The Computer Journal, Vol. 5, p. 162.

SHARE AD HOC COMMITTEE ON UNIVERSAL LANGUAGES (1958). ““The Problems of Programming Communication with Changing
Machines,” Communications of the A.C.M., Vol. 1, p. 12, and Vol. 1, p. 9.

Soap I (1957). “SOAP I1,” Programmers Reference Manual, 1.B.M. Publication 32-7842, 1957.

SteeL, T. B. (1960). “UNCOL, Universal Computer-Orientated Language Revisited,” Datamation, Vol. 6, p. 18.

TaLk (1964). TALK—6 Programmer’s Reference Manual, English-Electric-Leo Computers Ltd., February 1964.

THompsoN, T. R. (1962). “Fundamental Principles of Expressing a Procedure for a Computer Application,” The Computer
Journal, Vol. 5, p. 164.

WILLEY, E. L., ef al. (1961a). “A Critical Appraisal of COBOL,” The Computer Bulletin, Vol. 4, p. 141.

WILLEY, E. L., ef al. (1961b). “‘Some Commercial Autocodes—a comparative study,” APIC Studies in Data Processing No. 1.
Academic Press.

Correspondence
An impossible program
To the Editor, To the Editor,
The Computer Journal. The Computer Journal.
Sir,

Sir,

It seems to me that a point has been missed by your correspon-
dents on this subject. I too, think that Mr. Strachey’s proof*
is at fault, for this reason:

The Program P includes the procedure T(P) and it is
possible for some particular argument of T that 7 may itself
loop, so that since P includes T(P) the investigation 7(P)
must include the investigation T [T(P)}, and this must include
an investigation of all parts of T(P) including T [T(P)] i.e.
TIT(P)] includes T{TIT(P)]}, which must in turn include an
investigation of all parts of T[T(P)] including T{T[T(P)]}
and so on.

I must apologize to Mr. ApSimon. I did not intend* to ask
him to accept a non-existent proof involving a hypothetical
fraction. [actually intended to refer to a non-existence
proof of a hypothetical function, but my handwriting seems
to have betrayed me.

Yours etc.,

C. STRACHEY.

Churchill College,
Cambridge,
5 August 1965.

When P is executed an infinite recursion with no means of To the Editor,
escape will result, i.e. a closed loop exists in 7 when its argu- The Computer Journal.
ment is P. Sir,

P will loop, but since the loop is internal to 7, T(P) will Mr. Strachey seems to have proved that, if R may include
not take any value and there is no contradiction. It is clear T(R) and the function T(R) always terminates, then the
that 1f.T exists it is restricted to investigating programs not function T(R) does not exist. Are these useful conditions?
including itself, but no proof of the impossibility of this May not T (R) without one or both of them exist ?
program has been given. Yours faithfully,

Yours faithfully, J. H. G. PHILLIPS.
B. E. BouTEL ‘MICHAEL IRISH.
34 The Hoe, : The National Cash-Register Co. Ltd.,
- Carpenders Park, 88/92 Baker St.
Watford, Herts. London, W.1. ’
10 August 1965. 23 September 1965.
* This Journal, January 1965, p. 313 * This Journal, July 1965, p. 176.

215

20z Iudy 61 U0 }sonb AQ $8ESGEE/S0Z/E/8/3I0NE/UIWOD W00 dNo"olWapeoe)/:SdRY WO} POPEOJUMOQ

