Underground air storage

¢’ = dimension correcting factor.
dH = the enthalpy transported into the system across
its boundary (CHU).

I’ = the effective tunnel length considering the tunnel
to be a single long straight one. (This was
taken as the total tunnel length for the
purpose of the computation.)
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Sir,

Since its publication by Rosenbrock (1960), the function
Q = 100(x;, — x;2)? + (1 — x|)*> has become a classic for
testing various minimization methods, as indicated in papers
by Powell (1965) and Nelder and Mead (1965), where 70
and 150 evaluations of Q are required for convergence.

It is curious that, so far as I can discover, the most funda-
mental application of least-squares techniques has not been
mentioned. To this end, the function was formulated as a
least-squares problem with the parameters and submitted to
the Los Alamos Least Squares Program of Moore and
Zeigler (1959). The following table of results, given to eight
figures for those who may wish to make a comparison, shows
that the venerable Gauss linearization technique (applied
with no attempt at step-size optimization) gives an exact
solution with only four evaluations of Q. The program,
originally written in FORTRAN 1I, is now available in
FORTRAN IV and was run on an 1BM 7094.

Table
Itera-
tion
1 —1-2000000 x 100 1-0000000 x 100 2-4199999 x 10!
2 9-9999548 % 10-1 —3-8399892 x 100 2-3425407 x 103
3 1-0000039 x 100 1-0000077 x 100 1-4983792 x 10 11
4 1 - 0000000 1 - 0000000 0

It is to bz noted that the behaviour of Q is hardly mono-
tonic. It seems to me that too much is staked on the require-
ment of monotonicity for a minimization procedure to be
good and desirable. Some procedures that require the
decrease of the object function at each step have bzen found
at the Los Alamos Scientific Laboratory to “bog down” far
short of their optimal value. Thus, the monotonic decrease
is neither a necessary nor a sufficient condition that a particu-
lar method be satisfactory.
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Yours truly,
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Dr. Rosenbrock replies.

Many years ago I solved this problem by the Newton-
Raphson method, which is almost equally fast. This I
regarded as amusing rather than significant, because in an
engineering problem it would be entirely a matter of chance if
the behaviour of the function at the remote points reached by
these methods gave any information about the behaviour in
the vicinity of the optimum.

I feel that Dr. Moore has missed the point of the example.
This was concocted to have the difficulties with which ordi-
nary hill-climbing methods have to contend in practice, and
it was implied that the rules of the game did not allow us to
exploit the particular form of the function. After all, if we
simply want the answer, the easiest way is to use the calculus.
If the example had been devised to show up the difficulties of
Newton-Raphson or the Gauss linearization, it would have
looked rather different. Dr. Moore might like to try out his
method on the function

o= () + (o)

starting from x = — 10.
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