A tree-search algorithm for mixed integer programming problems

By R. J. Dakin*

This paper describes a new algorithm for finding solutions to optimization problems in which
some of the variables must take integral values. The algorithm appears to offer some advantages
over a similar algorithm proposed by Land and Doig, from which it was developed.

The paper describes computational procedures which result in modest storage requirements.
The method has been programmed and used to solve several problems.

Land and Doig (1960) have proposed an algorithm for
solving linear-programming problems in which some of
the variables are required to be integers. The procedure
consists of a systematic search of continuous solutions
in which integer variables are successively forced to take
integral values; the logical structure of the set of solutions
is that of a tree.

As it stands the algorithm gives rise to substantial
practical difficulties for computer implementation, since
the recording of the tree could involve excessive storage
requirements.

This paper presents an algorithm which is similar in
concept, but is easier to implement than the Land and
Doig algorithm. It appears likely to be more efficient,
although this has not been conclusively demonstrated.
The algorithm employs a tree search procedure similar
to that described by Little, Murty, Sweeney and Karel
(1963) in their section entitled ‘“Throw away the tree”;
a somewhat more complicated version of this procedure
could also be used for the Land and Doig algorithm.
We also note that the procedure falls into the general
classification of “branch and bound” techniques, as
described by Little et al.

The algorithm is applicable to both linear and non-
linear problems; however, computational experience has
so far been obtained for the case of linear programming
only.

The problem
We are required to find values for the variables

() =X, X35« X0y Vis Y2y - -+ Vi (1)
which minimize the function
2(x, y) (2
and satisfy the conditions:
fi,»)=0@G=1,2,...m), 3)
the elements of (x) are integral )]
and x>0,y>0. ®)

The problem (1), (2), (3) and (5) (without the integrality
condition) is referred to as the continuous problem. A

solution to the continuous problem which also satisfies
(4) is called an integer solution; if (4) is not satisfied it is
a non-integer solution.

We assume that an algorithm exists (which we call the
sub-algorithm) for finding solutions to problems con-
sisting of the continuous problem with the addition of
upper or lower bounds on any of the integer variables.
The existence of such an algorithm will almost certainly
limit us to problems in which z(x, y) is concave and (3}
and (5) specify a convex region.

The integer algorithm consists of a number of appli-
cations of the sub-algorithm to different problems. We
shall show that, if the sub-algorithm is finite and the
integer variables are bounded, then an optimal integer
solution will be reached after a finite amount of com-
putation.

QOutline of the algorithm

Suppose x; is an integer variable and k is an integer.
Then, since the range k < x; < k + 1 is inadmissible,
we may divide all solutions to the constraints (3) to (5)
into two non-overlapping groups, viz.:

(i) solutions in which

x < k ©)
(ii) solutions in which
x; >k + 1. (7

The algorithm starts by finding a solution fo the con-
tinuous problem. If this solution is integral, then it is
the solution to the complete problem. If it is non-
integral, then at least one integer variable —x;, say—is
non-integral, and takes the value b;, say, in this solution.

We now divide b; into integral and fractional parts [b;]
and f;, respectively, defined by:

b= [b]+1; ®)

where [b;] is integral and 0 < f; < 1.
We now substitute

k = [b)] ®

into (6) and (7); it is apparent that neither of these
relationships is satisfied by the current non-integer
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solution. We now add each of these constraints in turn
to the continuous problem and solve these augmented
problems.

We then repeat the procedure for each of the two
solutions so obtained. The logical structure of this
process is that of a ‘“‘tree”; a typical tree is shown in
Fig. 1.

Each node represents a solution to an augmented con-
tinuous problem, and is shown with the additional
constraint which was applied in order to reach the
solution.

The tree will always terminate in one of two ways;
we may reach an integer solution (denoted by “I”” in
Fig. 1) or we may find that the current set of constraints
has no solutions (denoted by “NS”). The solution to
the complete problem will be the best integer solution
reached in this way. Hence the complete problem is
solved by searching this tree.

The tree is not, in general, unique for a given problem
since at any stage we are at liberty to form the next
constraint using any x; which is non-integral; choice of
different x; will lead to different trees. As we shall see,
the choice can have a large effect on the amount of
computation required.

Note that only two branches, and hence two sub-trees,
emanate from any one node—contrasting with the Land
and Doig algorithm where any number of branches may
emanate from a node (e.g. Fig. 8 of Land and Doig (1960)
where six branches emanate from the node labelled y°).

More than one constraint may operate on a variable
at once. For example, at node 9 in Fig. 1 the constraints
x; > 1 and x, > 5 both apply. The number of these
constraints which may operate-on a variable at once is
limited by the range of values which the variable may
take. Thus, if the original constraints (3) restrict x; to
the range 0 < x; < v then only v integer bound con-
straints within this range are consistent with x; = k; viz.

x> Lx;>22,.. .52k x;<kx<k+

L ...x;<v — L

Computational search procedure

If this algorithm is used in hand computation, then
it is sensible to proceed, at each stage, from the lowest
cost terminal node which has been reached; this will
minimize the searching of unlikely (i.e., high cost) sub-
trees. One can use this nodal solution as a starting-
point for the optimization if the sub-algorithm permits
it, since this is likely to be near to the next solution, and
should require less computation than if we started at an
arbitrary point (this appears to be true in the case of
linear programming).

Such a procedure is impracticable for implementation
on an automatic computer, if we are to deal with
problems of any size—since the recording of the required
information for each node* involves an excessive

* For the case of linear programming by the straightforward

Simplex method, we would require a complete copy of the tableau
for every node.
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Fig. 1.—Tree representation of search procedure

amount of storage. The use of a backing store (e.g.,
magnetic tape) for this purpose would involve an
excessive penalty in transfer time for most present-day
computers.

This difficulty may be overcome if we restrict the order
in which the tree is searched so that each branch is
followed until an infeasible or integer solution is reached.
In this way we may use the solution from the preceding
node as starting-point for most optimization steps, but
we may search some of the tree which would otherwise
be avoided.

All necessary information regarding the current status
of the search can be reduced to a list, each entry of
which contains details of a node in the tree. At any
stage the list represents the chain of nodes leading from
the continuous solution node to the current node; the
position of the entry in the list is the same as that of
the corresponding node in the chain. i

Each list entry carries a “list marker” which is set
when we have explored one of the two sub-trees
emanating from the previous node. Since an alternative
constraint is never tried until we have explored the sub-
tree emanating from it, the presence of a list marker
indicates that the corresponding constraint has been
swapped for its alternative.

The amount of information in a list entry—variable
name, value of the bound, whether the bound is upper
or lower, and list marker—is not excessive and in both
computer codes so far written it was possible to pack
each list entry into one computer word.

The computational procedure is summarized in the
flow diagram in Fig. 2. Referring to the steps in the
flow diagram, we may describe the sequence of events
in terms of the tree structure as follows:

Step 2 (first time). Solve the continuous problem.

Steps 2, 3, 4, 6. Proceed down a chain in the tree
until either an integral solution is reached or the
problem becomes infeasible. In practice step 3 will
usually be part of step 2.

Step 5. If the solution is integral, we record this
solution if it is the best so far. This information,
together with the list, is the only storage requirement
additional to that required for the sub-algorithm
(step 2). We may avoid the need for storing this
solution internally by printing it out at this stage.
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Steps 7,9, 10. We now proceed to look for a part
of the tree which has not so far been explored. We
start inspecting earlier nodes of the tree (corresponding
to higher list entries) until we find a node—node j,
say—such that one of the sub-trees emanating from
it has not so far been explored, i.e., an unmarked list
entry. Since we have had to go back as far as node j
to find an unexplored sub-tree, the current sub-tree
from node j must be completely explored. Hence we
attach a list marker to the node j list entry and start
gcing down a chain of the alternative sub-tree from
node j, using steps 2, 3, 4 and 6 as before.

Step 8. The search terminates when there are no
unexplored sub-trees.

Reverting to the tree shown in Fig. 1, the nodes have
been numbered in the same order in which they would
be reached by this search procedure. This order is not
in general unique, since the choice of which branch to
follow at each stage is quite arbitrary. Table 1 shows
how the list would appear at each stage of the process.
The table has been laid out such that the list, as it is
at any node, consists of the entries appearing next to
the node number and extending up to the next horizontal
line in the table. It should be noted that the node
number and the nature of the solution obtained do not
actually appear in the list but are included here as
explanation. We notice that although there are nine
different solutions to keep track of, the list never contains
more than three entries (at nodes 8 and 9).

Comparison with Land and Doig method

The close connection between this algorithm and that
proposed by Land and Doig (1960) has already been
noted. The basic difference is that the Land and Doig
algorithm forces variables to take exact integral values
rather than applying bounds, so that it is necessary to
search over the range of integer values for which z is
less than the value it takes at the best known integer
solution. If all integer variables are restricted to the
values 0 and 1 then the two methods are essentially the
same, and the only contribution of this paper is to
provide a convenient computational procedure for
carrying it out.

For the general case in which integer variables are not
so restricted the two methods are quite distinct, and it is
not altogether clear which one will produce a solution
more rapidly. Indeed, the convergence of both methods
is strongly dependent on the choice of integer variable
to constrain at each stage.

There are, however, some grounds for expecting more
rapid convergence for our algorithm in many cases.
This algorithm will, in some circumstances, search over
a smaller range of values for an integer variable than the
Land and Doig algorithm, since we can stop as soon as
an integer solution is reached. Moreover our method
will, in some cases, skip over some values of an integer
variable which would be tried in turn by the Land and
Doig algorithm. . Thus, in Fig. 1, x, goes from 1 at
node 5 to 5 at node 9.
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Table 1

Lists associated with Fig. 1

NODE VARIABLE CONSTRAINT MARKER SOLUTION
1 List empty Non-integer
2 Xy <0 no Non-integer
3 X4 <3 no Integer
Xy <0 no
4 X4 >4 yes Integer
5 X4 >1 yes Non-integer
6 X3 <1 no Infeasible
X >1 yes
7 X3 >2 yes Non-integer
8 Xy <4 no Infeasible
Xy >1 yes
X3 >2 yes
9 X >5 yes Integer

7.

START : list empty
current problem = continuous problem

2. ‘ Solve current problem { -

v

3. Ds current problem feasible ? }

No

Yes f

4. ‘ Is current solution integral ? I

Yes v No 1
| ¢
Record current - |
5. | solution if Add bound con-
| best so far. 6. | straint and make
| * | list entry.
Go to step 2.
Vo ¥ 7
‘ Is the list empty ? (
No JI' Yes %
Is last list Output best in-
entry marked ? 8. | teger solution
FINISH
Yes JI’ No L2
[
Erase last Remove constraint
list entry corresponding to last
and remove I1. | Iist entry, and add
corresponding N alternative constraint.
constraint. Mark last list entry.
| Go to step 7. Go to step 2.
' { )

Fig. 2.—Flow diagram for integer algorithm
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On the other hand our method may require the use of
two constraints rather than one in order to force a
variable to an integral value. Thus the argument is
indecisive.

Both A. G. Doig and J. M. Bennett suggested to the
author that the Land and Doig algorithm should be
amenable to a search procedure similar to that described
here. Such a procedure is the following. Instead of a
list marker, it is necessary to incorporate in each list
entry the range of integer values for which the corre-
sponding sub-trees have been explored, together with
two markers which indicate that the value of the variable
has been increased or decreased as far as it can be (with-
out incurring infeasibility). All sub-trees emanating
from a node would then be regarded as exhausted when
both markers are set.

Speed considerations

Experience to date indicates that the convergence of
the algorithm is, to a very considerable extent, dependent
on how certain details of the algorithm are applied. The
amount of computation involved in finding a solution
depends on two principal factors: the number of mini-
mizations and the amount of computation involved in
each minimization. The latter depends on the particular
type of problem and the sub-algorithm used, and will
not be dealt with here. The number of minimizations
is strongly dependent upon the number of entries in the
list, since if for all integer or infeasible solutions the list
were of length K, then 2K such solutions would be
reached, involving 2XK+! — 1 minimizations in all. In
practice, the list length will not be the same for all
infeasible or integer solutions, but the need for limiting
it is apparent.

Bound constraints on z

Land and Doig (1960) point out that once we have
reached an integer solution with z == z,, say, then at
any later stage where z > z, it will be pointless to add
any further constraints which will make z still greater.
Hence we may add the constraint z < z,, which makes
the condition z > z, appear as an infeasibility. This
constraint will be adjusted each time an integer solution
is reached.

Land and Doig suggest setting z, at some initial value
at the start of the procedure—a useful device, provided
we know enough about the problem to be able to set a
reasonable value.

Another device is to replace z, by zy — e, where e is a
constant, whenever an integer solution is reached. This
will have the effect of producing a solution which,
though not necessarily optimum, is known to be within
e of the true optimum. If this leads to a substantial
reduction in computation then it may very well com-
pensate for obtaining only an approximate result.

Choice of constraints

After any application of the sub-algorithm several of
the integer variables may take non-integral values. A
number of selection criteria have been tried in linear-
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programming examples with widely varying results. By
far the best (in terms of Simplex iterations) has been to
look for the constraint which will lead to the largest
increase in z during the first Dual Simplex iteration
performed after adding the constraint (this can be
determined without actually performing the iteration),
and to add either this constraint or its alternative. In
order to determine the change in z we first add the
constraint and go through the motions of pivot selection
for the Dual algorithm—a procedure similar to the
“parametric programming” method described by Land
and Doig (1960).

The aim of the criterion is to violate the z < z, con-
straint as quickly as possible, and hence limit the length
of the list. The choice of the alternative constraint will
alter only the order of search, not the tree itself; we
would, however, expect to reach a low cost solution
more rapidly with the latter choice.

Other criteria which we have tried include the selection
of upper bounds on the non-integral x variable with the
smallest non-zero fractional part, the one with the
largest fractional part and the one which is nearest to
the top of the tableau. All of these criteria required at
least twice as many Simplex iterations as the “largest
change in z” criterion for the problems tried.

If, in the course of selecting a constraint by the
“largest change in z” criterion, we find a constraint
which would immediately lead to infeasibility or to z,
being exceeded, then the alternative constraint must
apply. We may therefore add any such constraints,
and their alternatives need not be considered. In
practice this has made only slight improvements to the
performance of the algorithm.

Computational schemes for linear programming

Although we have regarded the constraints (6) and (7)
as additional to the original constraints (3) and (5) it is
possible, in the case of linear programming, to incor-
porate them without increasing the size of the problem.

For the case where the integer variables may take
only the values 0 or 1, provided a bound constraint
x; < 1 which is equivalent to x; + xj = 1 is included
for all integer variables x;, then x; may be forced to
either 0 or 1 (equivalent to the “additional constraints™
x; < 0 and x; > 1) by forcing either x; or x; out of the
basis.

For the more general case in which the integer
variables, though restricted in range, may take on values
other than O or 1, we make use of the “bounded variables™
technique (Charnes and Lemke, 1954; Dantzig, 1955)
which provides for the inclusion of the effects of bound
constraints such as:

x; < u; (10)
without actually including (10) in the constraint matrix.
We set initial bounds on all of the integer variables, and

employ an adaptation of this technique in order to insert
further bounds. Thus the constraint

X<k ©)
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is effected by changing the value of the upper bound to &,
while the constraint

x>k +1 ©)

is effected by a change of origin: we substitute
xj=x; +k+1 (11)
and replace the previous bound—u;, say,—by w;—k

— 1. The implicit condition x; > 0 will then ensure
that (7) is satisfied.

Storage requirements

The only data storage requirement, apart from the
requirements of the sub-algorithm, is that required for
the list. As we have seen, the number of additional
constraints, and hence the length of the list, cannot
exceed Xv;, where v; is the range of values for the integer

variablejx,-. The list usually is a small proportion of the
total.

In the computer codes so far written for linear pro-
gramming, using the Simplex method as sub-algorithm
and updating the complete tableau, the total data
storage requirement has been

Xv; + (m + 2)(n’ + 2) words,
j

where m is the number of constraints in the continuous
problem (excluding upper-bound constraints if the
bounded variables procedure is used), and n’ is the
number of non-basic variables.

Computational experience

A summary of the performance of the algorithm in
solving six problems is given in Table 3. These cal-
culations were carried out on an English Electric-Leo
KDF9 computer, using the bounded variables procedure.
Details of the problems are given in Table 2. The
iteration counts include only iterations in which the
tableau is updated in the normal manner, and exclude
cases in which a bounded variable goes from its lower
to its upper bound or vice versa.

Performing Simplex iterations is the major part, but
not the only part, of the computation; the handling of
bounds and selection of new constraints are also sub-
stantial items. Analysis of the computation time
indicates that about half of the time is spent on per-
forming Simplex iterations by the KDF9 program.

A number of other problems have been solved by the
algorithm; the results quoted are typical. Two problems
similar to Nos. 5 and 6 have, however, failed to yield
optimal or near-optimal solutions within a reasonable
time.

The computation involved in solving problems 1 and 4
appears to be similar to that required by Healy (1964)
using Multiple Choice Programming, although Healy’s
results are given in a form which makes exact com-
parison difficult. Problem 3 was solved faster by
Gomory’s mixed integer algorithm (Gomory, 1960),
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Table 2
Details of integer programming examples
INTEGER
VARIABLES DATA
NO. SIZE* STORAGE DESCRIPTION
(words)
NO. | RANGE
1 7x 15|15 0-1 168 | Fixed charge
problem
(Healy, 1964)
2126x 9| 8| 0-1 316 | Phase problem
(Freeman et al.,
1963)
3131x39 |44 | 04 | 1528 | Power systems
problem
(Dakin, 1961)
4 | 15x30|30 | 0-2 574 | Liquids and con-
tainers problem
(Healy, 1964)
5(12x99 |91 0-1 1505 | Phase problem
(Dakin, 1964)
6|17 x93 |80 | 0-1 | 1885 | Phase problem
(Dakin, 1964)

* (Linear inequality constraints, exclusing objective and upper
bounds) X (non-basic variables)

Table 3
Performance of integer programming algorithm
CUMULATIVE SIMPLEX ITERATION COUNTS
PROB. TOTAL
TIME*
NO. CONTINUOUS FIRST FINAL END OF MIN., SEC.
SOLUTION SOLUTION | SOLUTION SEARCH
1 7 10 10 | 18 0,5
2 16 64 189 201 | O,11
3 24 36 50 75 | 0,12
4 23 210 210 484 | 0,28
5t 27 440 3155 | >9700 | 14,50
6t 90 445 460 | >4600 | 7,28

* Central processor time for KDF9, including input/output
conversions but excluding peripheral transfer times.

+ These runs were terminated before completion. In both
cases the first solution was substantially the same as the known
optimal solution.

which required only 30 iterations. On the other hand
problems 4 and 6 were unsolved by the Gomory
algorithm after completing over 2000 iterations in each
case.

Conclusions
One feature of the algorithm which could prove to be

valuable is its ability to produce near-optimal solutions
fairly rapidly, even in cases when it takes an unreasonably
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long time to obtain an optimal solution and prove that Although our experience, and some of the details of
it is optimal. the algorithm, are limited to linear-programming

In common with other integer-programming algorithms problems, the basic principles of the algorithm apply to
it cannot be guaranteed to solve «ll problems within a non-linear problems as well.

reasonable time. A wuseful development in integer-
programming theory would be the determination of

classes of problem which can and cannot be readily Acknowledgements
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Book Review

L’ Automatisation des Recherches Documentaires: un modéle In this situation there is an obvious interest in finding the
générale, Le SYNTOL, by R. C. Cros, J. C. Gardin and best combination of terms and syntax, and this book describes
F.Levy, 1964; 260 pages. (Paris: Gauthier-Villars, 30 F.) one of the most thorough and interesting attempts to do so.

One important question in information-retrieval research is An encodement in Le SYNTOL consists essentially of terms

how far document descriptions should be structured: should linked by general logical relations; the terms are incorporated

in lexical trees, and there are additional devices for marking
the main theme, for connecting trees, and so on. Associated
encodement ‘‘exports r Britain r America,” where r is some are bodies of‘rules, _fOT making encoderr_lents, apd fo.r operat-
relation? The former is simpler but is undiscriminating: we ing on them in retrieval. The system is described in detail,
get documents on exports in either direction. The latter is with chapters on the theory, programming, and experimental
more selective, but makes retrieval more complicated: should results. It is intended to be flexible, so that retrieval may
the request ‘““Ar,(Br,C)” retrieve documents encoded by be done by any combination of the aspects of the encode-
“(Ar,B) r,C,” say? Most retrieval systems have some lexical ments. The important point is how effective is the detailed

organization of terms, to allow searches by associated terms; relational structure? Unfortunately, the answer seems to

we describe a document on exports from Britain to America
simply by the term list ““exports, Britain, America,” or by the

this already means some complexity, which is much increased be that it is not effective enough, unless one is prepared to
if encodements have a syntactic structure. The initial docu- pay the cost of very heavily controlled and exhaustive searches.
ment analysis is also much more work. KAREN SPARCK JONES
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