Evaluation of certain definite integrals frequently encountered
in radiation and diffraction problems involving circular geometry™

By E. J. Martin, Jr.t and Peter C. Patton§

Consideration is given to the evaluation of definite integrals of the form

27 i
- . sin
I= jocos n(E + Yn)lexp (£ iBR)/R] cosE"dg

where n is any integer and R = [r2 + a2 — 2ra sin 0 cos E]'/2. These integrals are encountered
in a variety of electromagnetic radiation and diffraction problems involving circular geometry.

Various techniques that have been used to obtain approximate evaluations of these field
integrals are discussed briefly. Subsequently, a rather straightforward analytical method is
described which gives closed-form evaluation of the integrals without resorting to any simplifying
approximations. The results of this method are presented in terms of near-zone or source-region
functions, depending on whether r > a or vice versa. These functions are defined by infinite
series which involve well-known mathematical functions.

Some interesting properties of the near-zone and source-region functions are considered, and
it is shown that their infinite series representations are amenable to machine computation.
Problems associated with the calculation of numerical values are discussed and generalized

algorithms for the near-zone and source-region functions are presented.

1. Introduction

Recent advances in radio-frequency technology have
resulted in a growing need for accurate knowledge about
the total electromagnetic fields that are produced in the
immediate vicinity of current distributions on antennas
or diffracting objects. Analytical methods, based largely
on approximation techniques, that are currently used to
calculate these fields, do not provide the degree of
accuracy that is required in many instances. Of parti-
cular interest in this connection are the definite integrals
of the form

1= [ cos n(& + )lexp (+iBRYR] " ¢t (1)
o " - cos

where n is any integer and

R =[r? + a®> — 2rasin 0 cos £]'/2.
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These integrals are encountered in a variety of electro-
magnetic radiation and diffraction problems involving
circular geometry. In the past, a number of different
approximation techniques have been used to obtain
evaluations of these integrals.

What is probably the most widely used approach to
the approximate evaluations of the integrals (1) begins
with the removal of a factor r from the radical on the
right side of (2). Next, the remaining square root is
expanded into a power series in the quantity a/r. An
attempt is made to achieve an accuracy commensurate
with the requirements of the problem under considera-
tion by selecting the number of terms of the power
series expansion that are retained in subsequent cal-
culations. This technique forms the basis of both the
so-called “far-zone” and the ‘Fresnel-region” approxi-
mations.

According to the “far-zone” approximation, only
terms of the power series expansion of (2) that are of
order zero in a/r are used in expressing the amplitude
factor, 1/R, that appears in the integrand of (1). How-
ever, terms of both orders zero and one are used in
expressing the phase factor, exp (+i8R). This approxi-
mation has been widely applied to the solution of
problems concerning the calculation of the radiation
fields produced at great distances from structures such
as the thin-wire circular loop antenna (Foster, 1944;
Wait, 1959a; Martin, 1960), the narrow annular slot
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Radiation integrals

antenna (Wait, 1959b), open-ended coaxial lines (Ramo
and Whinnery, 1947), and cylindrical radrators of
finite (circular) cross section (King, 1964).

The more accurate “Fresnel-region” approximation
also depends on the assumption that I/R = 1/r, but
retains power series terms up to the order two in r for
purposes of expressing the phase factor in the integrand
of (1). This approximation has found extensive appli-
cation in the calculation of the so-called optical-Fresnel
fields produced by illuminated apertures (Silver, 1939).
A variation on ‘this second-order approximation,
obtained by means of an iterative process, has been
developed by Hu (Hu, 1960) in connection with the

investigation of the Fresnel-region field distributions of

circular aperture antennas.

A different approach to the development of an
approximation technique has been used by Seshardi
and Wu (1960; 1963) in the evaluation of special cases
of (1) that are encountered in the analysis of the diffrac-
tion of electromagnetic waves by circular apertures in
infinite screens having specific conductive properties.
This approximation is obtained by means of a rather
lengthy derivation based on the fact that, under the
assumed conditions, significant contributions to the
integral correspond to only two stationary values of .
A somewhat similar technique has been employed by
Lavine and Papus (1951) in the investigation of circular
diffraction antennas, and by Galejs and Thompson (1962)
in the calculation of admittances of cavity-backed
annular slots.

A method has been developed recently for obtaining
“closed-form” evaluations of the integrals (1) without
resorting to any simplifying approximations (Martin,
1963; 1964). This exact evaluation technique is based
on a rather straightforward analytical procedure that
involves only relatively simple mathematics. The pro-
cedure begins with the expansion of the integrand into
a Jacobi series expressed in terms of spherical Bessel
functions in Ba and Br, associated Legendre functions
in cos 6, and simple trigonometric functions in £. The
exact form of the Jacobi series depends on the particular
case of (1) that is under consideration but, in all cases,
term-by-term integration with respect to ¢ is a simple
matter. Rearrangement of the integrated series gives an
evaluation of the integral in terms of the ‘‘near-zone
functions,” F{%) (a,r,0) in those cases where r > a or
the “source-region functions,” G\ (a,r,0) when r < a.
Each of these classes of functions is generally defined
by an infinite series in a form that is amenable to machine
computation.

The validity of this evaluation technique has been
confirmed theoretically by demonstrating that the series
expansions of the integrands are uniformly convergent
on the interval 0 < £ < 27. A practical “proof” of
the results has been obtained by showing that the exact
expressions which are obtained by this method actually
contain a number of previously derived approximate
results as special or limiting cases.

This paper is devoted to a brief summary of the

G
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analytical techniques -used to obtain exact evaluations
of the integrals (1), and to the development of a
generalized computer program for machine calculation
of numerical values for the ‘“near-zone” and “‘source-
region” functions that are generated by the analysis.

2. Summary of analytical technique

In order to demonstrate the analytical procedure
involved in obtaining exact, closed-form evaluations of
the integrals (1), it will be convenient to limit considera-
tion temporarily to that partlcular case, of the four
that are included in (1), which is defined by

I = j cos n (¢ + Pn)lexp (IBR)/R] (S;lons NG

with the added stipulation that r >a. Under these
circumstances, the exponential factor appearing in the
integrand can be expanded in terms of Bessel functions
and Legendre polynomials as (Erdelyi, 1955a)

exp(iBR)/R=iB i;o(zm + 1)j(BaYRD(BP)P pfsin 0 cos £),

@
where the spherical Bessel function notation has been
used to replace the cylindrical Bessel function notation
according to the general relation (Stratton, 1941)

2n(X) = (7)2X)1 12 Z . 1/2(%)-

Moreover, the Legendre polynomials, P,(sin 6 cos £)
can be expanded in terms of Associated Legendre
functions (Erdelyi, 1955b) to put (4) into the form

exp (iBR)/R
—if % @+ V(BB PO (05 )
) & (m— R

ko1 (m + k)!

Now, in the physical problems in which (3) is encoun-
tered, both a and r are real, positive quantities while 0
and ¢ are real angles. Therefore,

“Pk(0)PE (cos ) cos k§:| ©)

2ar sin 0 cos ¢ < r? + a?

and exp (iBR)/R is analytic for 0 < £ < 2. It follows
(Szego, 1959) that the Jacobi-series expansion given in (5)
is uniformly convergent over the interval of ¢ that is of
interest. Consequently, (5) may be substituted into (3),
and integration of the resulting expression may be
carried out term-by-term as indicated by

I = i 2‘. @m + l)jm(ﬁa)h"’(ﬁr)[ (0)P,(cos 0)

jcos n(¢+ 1/;,,)21)“5 &d¢ 42 2 Em — kg‘ PE(0)Pk(cos 6)

J cos n(¢ + ,) cos kf cos fdf}. 6)
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Radiation integrals

Evaluation of the simple integrals appearing on the
right side of (6) is facilitated by the orthogonal properties
of the trigonometric functions. After appropriate
manipulation of the expressions that are obtained from
this process, it is found that

2n sin
) = Jcos n(§ + Po)lexp iBR)/R]  Edé;r>a
0

— . pSin _
= T inB it g, [F$Oa, 7, ) T Ffla,r, 0, (7)
where the “near-zone” functions, F{})(a,r, 0) are
defined, in general, by

& (= ymtr(dm + 2n + 1)(2m)!
F\Pa,r 6 =X )+ "(m)! (m + n)!

j2m+ n(Ba)h(Zln)H- n(Br)P;m-F n (COS 0) (8)

The foregoing results can be extended to the second
particular case of (1) where the exponential factor is
still exp (iBR)/R but now r < a. This is readily accom-
plished by simply interchanging the arguments of the
two Spherical Bessel functions appearing in (4) and
noting that the obvious result of this change is

2n . sin
I — J’Ocos n(¢ + ¥,) [exp (iBR)/R] cos Edé;r<a

= T inB oo nih, (G (a, 7, 0) T G (a, 1, 6)),
©

where the ‘“‘source-region” functions, G\Y)(a, r, 6) are
defined, in general, by

2 (— D" tn(dm + 2n + 1)(2m)!
GV (a,r, 0) = m2=0 )" *+(m)! (m + n)!

hgr)1+n Ba)j2m+ n(Br)Pim+n(cos 0).

The remaining two particular cases of (1) are treated
with equal facility by noting that when the exponential
factor exp (iBR)/R in (3) is replaced by exp (—iBR)/R
the results of the analysis will be the complex conjugates
of (7) through (10), respectively. Thus,

(10

- _ (= FPIT sin .
137 = [oos n(€ + g)lexp (— iBRR] o €65 7> a

= + inB oo n[Fi)(a. v, 0) T Fizl(a, r, ),
(11)

where the “near-zone” functions, F{;l(a,r,6) are
defined, in general, by

ym+n4m + 2n + 1)(2m)!
(2)*m+n(m)! (m + n)!

j2m+ n(ﬁa)hgrz +n(lgr)Pgm+ ,,(COS 0),

Far =% &
0

m=

(12)
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while
(=) __ 2 . sin .
17 = [cos n(€ + y,)lexp (—iBR)R] oo £dE; 1 < a
0
= + inf oo (G (@, r, ) F GiPi(a, 7, O)],

(13)
where the “source-region” functions, G$3)(a, r, 6) are
defined, in general, by

5 & (= Iytdm + 2n + 1)2m)!
i@ 0 = B ety + ).

m=0

h(2%1)l +n(ﬁa)j2m+ n(Br) Pgm +4"(COS‘ 0)

(14)

3. Properties of functions

It is of interest to consider some of the properties of
the near-zone and source-region functions defined in (8),
(10), (12), and (14), and to comment on the significance
of these properties:

3.1 Asymptotic behaviour

Examination of the behaviour of the near-zone and
source-region functions under certain limiting condi-
tions is of importance in establishing relationships
between exact evaluations of the field integrals (1) and
various approximations. Of particular interest in this
connection are the behaviour of the near-zone functions,
F*)(a, r, 0) under two different circumstances (viz.,
when r becomes very large and when a becomes very
small), and the behaviour of the source-region functions,
G{*)(a, r, 6) when r becomes very small.

For the case where r becomes very large,

HaxZa(Br) & (Fi)» 1 [exp (£ ifr/(BN].  (15)

When this approximation is used in either (8) or (12),
and it is recognized that expansion of the cylindrical
Bessel functions in terms of spherical Bessel functions
gives

§ (_(21)):,(n4:1:(jn_) !2’(lm+_: )’(1)2:71) ! Jam-+ (B@) P54 (cos 0)

= J,(Basin 6), (16)
it is possible to write
F®a,r, 0) = (Fiy*! [exp (£ iBr)/(Br)}J.(Ba sin 0),
for (r — ). a7
For the case where a becomes very small, the power-
series expansion of spherical Bessel functions gives
jZm-\‘ n(ﬂa) =
(2)2m in E (— D¥2m + n + k)!
k=0 (k)! (4m + 2n + 2k + 1)!
from which it can be established that
. . 2)"(n)!/(2n 4+ 1)! fi =k=0
i { . (B (Bayy = {0 D form

0, otherwise.

m=0

(Ba)¥m+n+2k,
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Radiation integrals

Therefore, the near-zone functions become
Fi¥a, 1, 6) ~ (— Payh @(Br)P; (cos 6)/(2n)!,

for (a—0). - (18)
Acco:di:x{g to (7) and (11), the special case of (18) where
n=1_is of particular importance, because it corre-

sponds to a “uniform distribution” (i.e., n = 0) in the
integrand of (1). For this special case, (18) becomes

F{*)Xa, r;0) = (Ba/2)h{>P(Br) sin 0, for (a—0). (19)

It is intefesting to note that when r— oo in (19), the
approximation given in (15) can be used to write
a—0 )

r — o0

A .
F{*Xa,r, 0) ~ (— a/2r) exp (£ iBr) sin 6, for

This samé‘ result is also obtained from (17) when n = 1
and a — Q; since

. Ji(Basin 8) ~ (Basin 6)/2, for (a — 0).

For ‘the case where r — 0, attention must be focused
on the source-region functions, G{*)(a, r, 6), rather than
the near-zone functions. Under these circumstances,
the procedure used to obtain (18) can be applied to (10)
and (14) to write

G\t a,r, 0) ~ (— Br)"hD> @ (Ba) P(cos 8)/(2n)!,for (r—0).

3.2 Convergence

‘Convergence of the infinite series (8), (10), (12) and
(14), which define the near-zone and source-region
functions, can be demonstrated by means of the ratio
‘test. For example, through the use of the general
relation between spherical Bessel functions

(2k + Dzp(x) = x[zic (%) + zx1(x)];

it is possible to write the ratio of successive terms of (8) as

,%:

and
P (0)=0,form=1,3,5,....

After convenient alterations of the indices and ranges of
summation in the resulting expressions, it is found that

§ 2m + 2n + 1)(m)!
m=0 (m + 2n)!
P;'n +n(0)jm+ n(,sa)hgk—(nz)(lgr)P:l +,,(COS 0)9 i (20)

F{*)a,r, 0) =

while

§ 2m + 2n + 1)(m)!
m=0 (m + 2n)!

P OVAGNBAYj 1 n(Br) P s n(cos 6).  (21)

The alternate representations of the near-zone and
source-region functions given in (20) and (21), respec-
tively, are used as a basis for numerical computations
discussed in a subsequent portion of this paper.

G\*)a,r, 0) =

3.4 Interrelationships
By means of the relation

Pg,,,“(cos 0) = (— 1)"(2m + 2n)! P3,"(cos 0)/(2m)!

(8) can be written as
(— Dm(4m + 2n + 1)2m + 2n)!
0 (2)2m+t7(m)'(m + n)!
J2m+ i(BOYHS 1 (B Pty n(cos 0).  (22)

Changing the index of summation according to the sub-
stitution m + n = p converts (22) into the form

% (— 1)»~"(4p + 2n + 1)(2p)!
(+) —
Fan 0= 2 = am i~ m!
Jan- lBaYHEY_(Br)P3, . (cos 6).  (23)

FP(a,r,0)= X

m=

_ (2m + I)Ba[j2m+ n+ I(Ba) +j2m +nt 3(Ba)]h(22+ n+ 2(/3")P5m +n+2 (COS 0)

Therefore, when m becomes very large # ~ (— PBa)/(2m)
or

lim [#] = 0.

m->oo

Clearly, similar results can be obtained from (10), (12)
and (14). Consequently, the near-zone and source-
region functions are amenable to machine computation.

3.3 Alternative representations

The definitions of the near-zone and source-region
functions given in (8), (10), (12) and (14) can be put
into an alternate form by applying the relations

(— 1ym"(2m + 2n)!

Pgm—i»n(o) = (2)2m -I-n(m)! (m + n)'
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(2m + 2n + 2)(dm + 21 + 1)jzms (B 1 ( Br) P3m +n(cOs 6)

However, since 1/(p —n)! =0 for p <n the lower
limit of summation in (23) can be changed to zero.
Then, from a comparison of (8) and (23) it becomes
evident that
F{ta,r, 0) = F')a,r, 0).

Clearly, an application of this same procedure to (10),
(12) and (14) will establish similar interrelationships for
FG)a,r,0), GYXa,r,0 and GY)Xa,r, 0). These
interrelationships are currently being investigated along
with (20) and (21) in connection with the development
of general recurrence relations for the near-zone and
source-region functions.

4. An algorithm for the computation of F,and G,

Since evaluations of the definite integrals are givep in
terms of the near-zone and source-region functions
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F and G(¥), a method for obtaining numerical values
of these functions is required if the results of the fore-
going analysis are to be of any immediate practical
value. To this end, a considerable amount of computa-
tional experience has been obtained with the series
representations (12) and (14), using the IBM 1620
computer, and with (20) and (21), using the UNIVAC
1107 computer. As a result of this experience, it has
been possible to develop a generalized computer
algorithm for the sets of series expressions representing
F( and G).

4.1 Development of the algorithm

A program was written in ALGOL 60 (Naur, 1960)
to prepare a table of values for F{~) and G{~. ALGOL
was considered to be the most suitable high-level com-
puter language available for this task because of its
facility for the expression of mathematical algorithms
and because there exists an international literature
(Comm. ACM, Vol. 3, 1960; The Computer Bull., 1964)
of ALGOL 60 algorithms for a wide variety of mathe-
matical functions. This algorithm library proved to be
helpful in the preparation of the tables for F{~) and
G{7; however, it was found in many cases that the
published algorithms are not quite perfect and had to
be corrected and revised. Those algorithms taken from
the literature, plus some new ones which had to be
written, were all checked out on the UNIVAC 1107
thin-film memory computer using 1107 ALGOL, an
extension of ALGOL 60 (Programmers’ Guide, 1965).
Certain problems which arose because of the limited
range (10%38) of floating-point numbers on the 1107
were checked with a FORTRAN program on the IBM
1620, which has a somewhat more extended programmed
floating-point range (10%%%). In certain regions of F(~
and G{ even the range of 1620 programmed floating
point was not adequate to prevent characteristic over-
flow and underflow. It is expected that a recomputation
of the functions on the UNIVAC 1108, which has a
floating point of 10%300 will allow computation of
values of F(™) and G~ in all regions of practical interest
without problems of characteristic underflow or over-
flow. Computations on the 1108 will also provide a
further numerical check on accuracy, since the Jacobi
series for F{7) and G{7) can be evaluated for 25 or 30
terms rather than just 16.

The primary difficulty in calculating F( and G’
with this general algorithm, once the specific algorithms
for the various mathematical functions were corrected,
was found in computing the imaginary parts of the
functions. The imaginary parts of the near-zone and
source-region functions contain a multiplied Neumann
function whose value goes toward minus infinity near
zero, and does so more rapidly as the order of the
function increases. Each term of the series for Im(F{™)
or Im(G{’) was within the floating-point range of the
computer; however, each is the product of a function
tending toward minus infinity (Neumann) and a function
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tending toward plus infinity (Associated Legendre) as
the summation index of the series increases. This over-
flow problem was worse in G{™) than in F{) since the
arguments r/a of G{™) are much smaller; being always
less than unity in the source region. In addition, the
algorithm for P™(x) caused floating-point overflow on
the 1107 for m greater than 16. This value set the upper
limit of summation. Since the function orders on the
second form of the Jacobi series (20) and (21) are smaller
than those of the first.form (10) and (12), it was thought
that the second series would be more efficient for com-
putation. The second form of the series was pro-
grammed in 1107 ALGOL and the first form in 1620
FORTRAN. The results compared to six decimal
places (with an upper summation limit of 16) for all
values of F(™) and G{) for which floating-point over-
flow did not occur. In the latter case, there was a
degradation in the comparison since the higher-order
terms of each series caused overflow. In some such
cases, only three figure compared and in a few bad cases
only one or two; however, the over-all comparison was
encouraging since completely different series forms,
approximations, algorithms, programming languages,
computers and arithmetic were used.

4.2 The general algorithm

The algorithm FN and GN for F{ and G, respec-
tively, are given with input parameters N = order,
BA = B*a, RA = rla, THETA = 0 and output values
RGN = Re(GN) and IGN = Im(GN) for G¢, and
RFN = Re(FN) and IFN = Im(FN) for F{?). These
procedures call upon the real procedure COEFF to
calculate

2m + 2n + 1ym!
(m(:;:;),)m . ¢n(cos 6);

the real procedure SPHBES to calculate spherical Bessel
functions; and the real procedure SPHBEN to calculate
spherical Neumann functions (Herndon 1961). The
latter procedure allows the computation of the Hankel
function as:

hle) :jn - ’yn

Although the values of F{) and G{~) could have been
calculated in complex arithmetic in 1107 ALGOL, it
was simpler to do two parallel computations since the
imaginary part of A is the only imaginary number in
the computation. If these algorithms are implemented
as complex procedures for any other ALGOL imple-
mentation with complex arithmetic or as complex
functions in FORTRAN 1V, it might shorten the time
of computation to deal directly with complex numbers.

LEGENDREA is a real procedure that calculates the
associated Legendre function P7(x). It is a somewhat
modified version of ACM 47 (Herndon, 1961) to allow
calculation of P™0). GAMMA, a real procedure for
the Gamma function ACM 34 (Lipp, 1961), is used for
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computing P"(0) by

(— 1y le‘(m +n+ l)

v F(n—m—+—1)

inside the general algorithm for P7'(x) (Erdelyi, 1955c).

SPHBEN, LEGENDREA and GAMMA can be
found in the cited literature; the other procedures are
given following:

procedure FN (N, BA, RA, THETA, RFN, IFN); value
N, BA, RA, THETA,
integer N; real BA, RA, THETA, RFN, IFN;
comment Computes the near-zone field FN = RFN-+ilFN
given the order N and the coordinates BA = B X A,
RA = R/A and THETA. This procedure uses
LEGENDREA Associated Legendre function, SPHBES
spherical Bessel function, SPHBEN spherical Neumann
function and COEFF, a special coefficient;
begin integer M ; real ANGLE;
ANGLE := cos (3-1415926 x THETA/180-0);
RFN := IFN := 0:0;
for M := 0 step 1 until 16 do
begin
RFN := RFN + COEFF(M,N)x SPHBES(M--N.BA)
X SPHBES(M+ N,BA X RA) X LEGENDREA
(N,M+N,ANGLE,0-0);
IFN := IFN + COEFF(M,N)x SPHBES(M-N,BA)
X SPHBEN(M+ N,BA X RA) X
LEGENDREA(N,M+N,ANGLE,0-0);
end; RFN :=((—1) T N)XRFN; IFN :=((—1) T N)
X IFN
end FN;

P 0) =

procedure GN (N, BA, RA, THETA, RGN, IGN); value
N, BA, RA, THETA;

integer N; real BA, RA, THETA, RGN, IGN;

comment Computes the source-region function

GN = RGN + iIGN given the order N and the co-
ordinates BA = BX A,

RA = R/A and THETA;

begin integer M ; real ANGLE,

ANGLE = cos (3-1415926 x THETA/180-0);

REN := IFN := 0-0;

for M :=: 0 step 1 until 16 do
begin
RGN := RGN-+COEFF(M,N)x SPHBES(M+N,

BA X RA)x SPHBES(M+ N,BA) X
LEGENDREA(N,M+ N,ANGLE,0-0);

IGN := IGN+COEFF(M,N)x SPHBES(M+N,
BAX RA)x SPHBEN(M+ N,BA) X
LEGENDREA(N,M+ N,ANGLE,0-0)

end; RGN := ((— 1) T N)XRGN; IGN := ((—1) TN)
X IGN

end GN;

real procedure COEFF (M,N); value M,N; integer M,N;
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comment Computes special series coefficient for FN and
GN,

begin real FACM, FACMN;; integer K;

FACM :== FACMN := 1-0;

for K :=1 step 1 until M do FACM := FACM X
(FACM + 1-0);

for K := 1 step 1 until M + 2X N do FACMN :=
FACMN X (FACMN+1-0);

COEFF := 2XM~+2XN-+1)XFACM X
LEGENDREA(N,M+N,0-0,0-0)/FACMN

end COEFF;

real procedure SPHBES (N,X); value N,X; integer N;
real X;
comment Computes spherical Bessel function by a tech-
nique similar to ACM algorithm 49, with a correction due
to M. Dacic of the University of Paris;
begin
real array BJ [l : 20]; integer M, L, I, L1, L2;
real BETA, BES, Y, FAC1;
M = N+1;L:=2xN+1; FACI :
if X = O then begin
if N = O then
begin BES := 0; go to GATE end
else
begin BES := 1-0; go to GATE end end;
if N> 16 goto GATE; if N>10 go to NEXT;
if (X—0:6—0-4x N) > 0 then go to COMP;
go to FIX;
NEXT: if (X—4:6—0-2x N) > 0 then go to COMP;
FIX: for I := 1 step 2 until L do FAC1 :=FACI1 X1,
BETA := (1:0—(XX X/(2-0xX(2XN +- 3:0)))
+(X74/8-0x(2x N+3-0)X
(2XN+5-0)))—(X T 6/(48-0x(2X N + 3-0)
X(ZXN+5-0)xX(2xX N+7-0))))/FACI;
BES :=1-0; for I := 1 step 1 until N do BES :=BESX X
BES := BESX BETA; go to GATE,
COMP: BJ[1] :=sin(X)|X;
BJ [2] := (BJ [1] — cos(X))/X;
for I := 3 step 1 until M do
begin L1 ;=1 —1;L2:=1— 2;
Y :=2xI—-3;
BJ[I] := (YxBJ[L1] /X)—BJ [L2]

= 1-0;

end;

BES := BJ [M];

GATE: SPHBES := BES
end SPHBES;

4.3 Computational results

A ‘driver’ or main program was written to ‘drive’
FN and GN through a sequence of computations to
generate a table of values of F{~ with angle 6 = 0, 10,
20, 30, 40, 50, 60, 80, 90 degrees ratios r/a equal to 1-1,
1-25,1-5,2, 3, 5 for orders N = 0, 1, 2, 4 and values of
loop radius equal to 0-2, 0-5, 1-0, 2-0, 5-0. G{™ was
tabulated for the same arguments with the exception
that its r/a values were set to 0-05, 0-1, 0-25, 0-5, 0-75,
0-9. The time required to calculate these 2400 eighteen-
digit complex values of F{™) and G, on the 1107 was
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Radiation integrals

1 hour 13 minutes and 40 seconds. These tables and venient to prepare a set of tables on his computer by
the check results computed on the 1620 are far too writing and running a driver program which calculates
extensive to present here, but an example of the results the values most useful to him and formats them in a
might be of interest. The Table opposite is a typical manner convenient for his application. If the F{*) and
page of output from the table builder program. G{P) values are only part of a more extensive com-
. putation, it would, of course, be more useful to imbed
5. Conclusions these procedures within the larger program. If the
The foregoing algorithms for F{~) and G{~ are easily potential user’s computer does not have an ALGOL
adapted to the numerical evaluation of the respective compiler (an unlikely possibility these days), it is simple
complex conjugate quantities F{*) and G4P. The user enough to hand translate the procedures given in this
of these algorithms for F(*) and G{*) may find it con- paper into FORTRAN 1V subroutines and functions.
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