An algorithm for reducing the bandwidth of a matrix of |

symmetrical configuration
By G. G. Alway and D. W. Martin*
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An algorithm is described which will reduce the bandwidth of a square matrix with symmetrically
disposed coefficients, by permuting the rows and columns. A computer program for the algorithm
has been used successfully to find the minimum bandwidth of matrices of order 30 or so arising
in electrical and hydraulic networks, and for reducing substantially the bandwidth of matrices of

order up to 250.

In many matrices, particularly those arising from the
study of networks and frameworks, a large proportion
of the coefficients are zeros. When the non-zero coeffi-
cients of such a “sparse” matrix are concentrated in a
narrow ‘“band” centred along the principal diagonal,
the representation of the matrix in a computer or on
paper is concise, and the arithmetic entailed in the
solution of sets of linear equations associated with it is
condensed. Unfortunately, sparse matrices often do
not display such a compact band structure. At the

same time it is common for the non-zero coefficients to -

occupy positions which are symmetrical about the
principal diagonal. Considerable interest therefore
attaches to the development of techniques for rearranging
the non-zero coefficients of a matrix by permuting its
rows and columns to provide the narrowest band pos-
sible, and yet preserve symmetry. (For matrices whose
non-zero coefficients are located asymmetrically about
the principal diagonal, one would permute rows and
columns independently, and the problem of determining
the narrowest band is then altogether more difficuit.
However, a reduction in bandwidth in this case might
be obtained by inserting additional coefficients to pro-
duce a symmetrical array, applying the procedures of
this paper, and then deleting the inserted coefficients
from the compressed matrix so produced.)

For an n X n matrix with symmetrically disposed
coefficients there are of course n! permutations available,
and when # is large the determination of a particular
permutation is likely to prove a formidable task. How-
ever, the difficulty of finding a suitable permutation
depends not solely on n, but also on the structure of the
linear graph associated with the matrix. For example,
when the matrix is such that the required permuted
form contains no zero elements within the band, there
exist only two corresponding permutations (one being
the reverse of the other), and the techniques described
in this paper will find one of them very efficiently,
regardless of n. Conversely, experience suggests that
the more permutations there are which give the narrowest
band, the more difficult it is to find one of them.

In the absence of appropriate theorems from the theory
of graphs, one approach to the problem is to construct
a computer program to survey the n! possible permuta-

tions, using such stringent conditions to dismiss unsuit-
able permutations that a comprehensive search can be
completed in a reasonable time. This approach is the
basis of the algorithm to be described here: it has proved
successful in achieving the minimum bandwidth for
matrices of order 30 or so, and in reducing substantially
the bandwidth of matrices of order up to 250.

The algorithm presented was devised largely by experi-
menting with a prototype computer program, and
modifying this to eliminate observed bottlenecks in its
operation. It will- be surprising and disappointing,
therefore, if more extensive trials do not lead to further
improvements of the algorithm. One purpose of this
paper is to interest other workers in the extension of these
ideas: the other is to present a tool which even in its
present form has proved useful in the solution of practical
problems.

Basic definitions and strategy

If working outwards in either direction from the
principal diagonal we label 1,2,...b the parallel
diagonals which must be traversed in order that only
zero elements lie in the remaining diagonals, the number
2b 4 1 is the bandwidth of the matrix. We refer to b
loosely as the “half-bandwidth” and define b(/) to be
the value of b for the matrix whose rows and columns
are ordered according to the /th permutation in the
lexicographical sequence of the numbers 1,2,...n.
(For example, when n is 3 the permutations corre-
sponding to the 3! values of / are

/ 1 -2 3 4 5 6
permutation 123 132 213 231 312 321.)

We assume that the given matrix corresponds to the
identity permutation, 123 ...n, Il =1, and that the
matrix is connected — since it would be prohibitively
wasteful not to apply the algorithm to the connected
submatrices.

The main part of the algorithm consists of a routine
which starts with a given permutation in the sequence,
and searches for the first permutation thereafter for
which b < m, where m is a given integer: if no such
permutation exists, the routine proceeds to the end of
the sequence without success. In general the time
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Take identity permutation
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Fig. 1.—Outline flow diagram of algorithm

required for a search is larger the nearer m is to the
minimum, but we have encountered matrices for which,
with certain values of m, more time was taken to find a
permutation giving b < m than to find one giving
b<m—1or b<m—2. For the smaller matrices
we have examined, no great loss of efficiency has resulted
from using the routine in the simple manner described
in Fig. 1.

The main routine is designed to examine together all
those permutations which have the same initial s ele-
ments, and to determine, by means of two basic criteria
I'; and I';, whether any of these (n — s5)! permutations
have b < m. If, on the one hand, the routine can decide
that all of these permutations have b > m, it proceeds
to consider a subsequent set of permutations in the
lexicographical sequence determined by other initial
elements. Since in this sequence all permutations having
the same initial elements occur together, rejection of
permutations corresponding to some small value of s
implies a large jump down the sequence. It is important,
therefore, that the criteria I'; and I', for accepting
permutations should be as stringent as possible. (It
will become clear in the next section that in concept T,
is a sufficient criterion, but in fact it is not sufficiently
stringent to be a practical tool by itself. Accordingly,
it is supplemented in appropriate circumstances by I',,
and this has proved so stringent that the speed of the
routine is increased by an order of magnitude.)

On the other hand, if the routine cannot decide that
all of the (n — s)! permutations have b > m, it increases
s by 1 and proceeds to examine a subset of the permuta-
tions just considered. If s becomes n — 1, a permutation
for which & < m has been found.
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A B

Fig. 2.—Constraints imposed by bandwidth on location of
matrix coefficients

The criteria I'; and T,

If the (i, ) coefficient of the matrix is non-zero, we
say that the ith and jth rows of the matrix are connected
by one link; if the (i, k) coefficient is zero, but the (i, )
and (j, k) coefficients are non-zero for one or more j,
we say that the ith and kth rows are connected by two
links, and so on. By considering all the connections of s
rows, whose row numbers in the original matrix are

fisf2 - . . [y, to the remaining n — s rows, criterion I',

determines whether f| f5. . . . f, in that order can be the
first s elements of a permutation for which b < m.

To illustrate this idea we consider the case s = 1 in
detail. Fig. 2 depicts the sort of sketch which the
reader will need to construct repeatedly in familiarizing
himself with the basic concepts of the algorithm. This
sketch represents part of a matrix already in band form
with half bandwidth m, in which the coefficients are
assumed to occur at the nodes of a square lattice, e.g.
at and between the points A, B, C, D, E, F, G, H where
ACEG ... is the principal diagonal and BDFH is the
extreme diagonal of the band. Each horizontal line in
the figure joins elements in a row of the matrix, and
each vertical line joins elements in a column; and the
hypotenuse and sides of each small triangle span m + 1
rows and/or columns.

The significance of the stepped line ABCDEFGH is
that the non-zero super-diagonal coefficients which
connect the first row of the matrix to other rows by just
one link all lie on AB, and the rows so connected to the
first row have their diagonal coefficients at C or between
C and A. The coefficients which form connections of
two or fewer links to the first row must all lie on or
within the rhombus ABDC, and the rows so connected
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Fig. 3.—Sketch for applications of I'; to f; and f;

to the first row must have their diagonal elements at E
or between E and A; and so on.

As can be seen from Fig. 2, it follows from the very
definition of bandwidth that f; can be the first element
of an acceptable permutation only if the number of
rows which include

/1 and rows connected to f; by one link < m + 1

"f1 and rows connected to f; by two or fewer links
<2m+1

f1 and rows connected to f; by ¢ or fewer links
<cm + 1.

The analogous situation for s = 2 is sketched in Fig. 3,
and we see that f; can be the first and f, the second ele-
ment of an acceptable permutation only if the number
of rows which include

f1 and f; and the rows connected to f; by one link
<m-+1

fi and f, and the rows connected to f; by one link

and the rows connected to f, by one link
<m-+2

/1 and £, and the rows connected to f; by two or fewer
links

and the rows connected to f, by one link
< 2m+1
fi and £, and the rows connected to f; by two or fewer
links

and the rows connected to f, by two or fewer
links < 2m + 2
and so on.

To keep the discussion concise we now represent the
information on row connections by means of binary
words or patterns whose individual bits correspond to
the rows of the original matrix. The least-significant bit,
denoted by =, corresponds to the first row, and the bit
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217 to the rth row. We denote by D(c, f) the word
whose non-zero bits indicate the rows connected to
row f by ¢ or fewer links, so that the non-zero bits of
D(1, f), for example, indicate the non-zero coefficients in
row f of the matrix.

We denote the number of non-zero bits in any word 4
by g{A}, so that ¢{D(c, f)} is the number of rows of the
matrix which are connected to f by ¢ or fewer links.
We denote by M the word whose non-zero bits indicate
the s rows f}, f5, . . . fy; when s = 1, M will contain the
single non-zero bit 2/i-17. We use the conventional
symbol \/ to denote the logical operation “or”.

The non-zero bits of D(1,f;) will include an entry
corresponding to fi itself only if the (f},f;) coefficient
of the matrix is non-zero. However, when M is 2/1— 17,
“f, and rows connected to f; by one link” are bound to
be covered by the word M \/ D(1, f;), and the number of
these rows is g{M \/ D(1, f,)}. Accordingly, the con-
ditions that f; can be the first element of an acceptable
permutation may now be written

gMV D, f)} < m+1
gMV D2, f)}<2m+1

)

c}{M V D(c, f1)} < cm + 1 and so on.

Again f; and f, can be the first and second elements of an
acceptable permutation only if

gMV\ D, f)y<m+1 '
where M is now 2/1— g 4 2215

adM Vv D, 1)V D, L)} <m+42

gM Vv D2, f)) vV D, fr)} < 2m + 1

gM N\ DQ2,f)V D2, fH)}<2m +2

and so on.

As entries for the rows f3, f4 . . . are added to M, the
gaps between the discrete groups of consecutive integers
which constitute the right-hand sides of the inequalities
analogous to (1) and (2) are gradually filled. Eventually
we reach the position where f}, f, . . ., f,, in that order
can be the first m elements of an acceptable permutation
only if

gMV\ DA, )} < m+1 _
where M is 2/t~ lq 42521 4 | 4 2/n-1g
gMV\ D(1,f) V D(1,fo)} < m+2

@

@M v DA, £) vV DA, f) V ...V D(1, £}

(3)
< 2m
@MV D2,f))V DL, f) V...V DA, f.)}
<2m+1

@MV D2, f)V D2, ) VDLf)V ...V
D, f}<2m+2 |

and so on.

For s > m the analogues of the inequalities (3) must
hold with M having s non-zero bits but with Ds relating
only to the m rows f; i1, fs—mi2--.fs While the
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right-hand sides take the valuess + 1,5 +2,...n — 1.
(As will be seen below, passage through other portions
of the routine for smaller values of s will have ensured
that the submatrix with rows f}, f5, . . . f, has a half band-
width not greater than m, and that the rows /1, f5, . . . fs— m
are not connected to any of the n — s rows outside the
submatrix.) If we denote by L, the binary word which
occurs within the braces on the left-hand side of the
inequalities for successive values p of the right-hand side,
and if we define ¢ and d by the relations

1<d<s, s—m<d, p—d=cm, )

(so that c is the least number of steps of length m back
from p which brings us to an integer d which is not
greater than s and positive—see Fig. 4), then

L,=M\D,fom:) VD, f—mea)V ... VD(c. fy)
\/D(C - l’fd+l)v .. VD(C - l’fs)' (5)

Here, as Fig. 4 indicates, connections of up to ¢ links are
considered for rows f;__,,. to f,, and of not more than
¢ — 1 links for rows f; ; to f;. Thus the non-zero bits
of L, indicate the rows which, by virtue of their con-
nections to each other, must be placed among the first p
rows of the matrix defined by the permutation currently
under construction, for p=s+1, s+2,...n—1
(or, when s <.m, for those values of p for which
I<p—em<s,c=1,2,...). Clearly we require
that ¢g{L,} < p, and this constitutes our criterion IT',.

Ifg{L,} > p, fi...f,cannot be the first s elements of
an acceptable permutation, and the routine proceeds to
consider subsequent permutations in the lexicographical
list. If g{L,} < p, the routine proceeds directly to the
test for p + 1, but when g{L,} = p the current situation
must be examined more closely. The routine pursues
different courses of action depending on whether
p=s+lorp>s—+1.

In the former case the first test with I'; on the rows
Jf1>f2, - . . f; shows not only that these may be the first s
rows in the permuted matrix, but also that there must be
a unique row which defines the (s 4 1)th element in the
same permutation. This row corresponds to the single
bit which is not common to M, which is composed of s
non-zero bits, and to L, ;=M\ D(1, f,_,,.1), which
contains s 4+ 1 non-zero bits. Hence f;. , is determined
from L — M without further tests, and the routine
proceeds directly to apply Iy, to the elements
fi,.fo, ... fs41- (In fact this determination of f,., is
the part of the routine referred to earlier which ensures
that row f;_,,., is connected only to rows which are
included in f;_,,, 11, fi—am+2 ---fs+1; and we know
that row f , will be linked to row f;_,, ., by a non-zero
coefficient which lies on the edge of the band.) More-
over, the uniqueness of f;, ; means that if no acceptable
permutation can be found having f}, f5,...f,+ as its
first s 4 1 elements, the next permutation in the sequence
to be examined must correspond to a change of f; or an
earlier element. The special nature of f, , is recorded
for subsequent reference by a binary indicator, W, ;.

When ¢{L,} =p and p>s+ 1, we are not able
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() 1

(1) |2

(15_,,.,) s-m
(fd) d= p-N
(fs) s

Fig. 4.—Sketch for an applicationof I'; to f, /2, . . . f, (s > m)

immediately to determine any subsequent element of the
current permutation uniquely, but we can apply a further
criterion, I',, to the rows which compose L,. I'; requires
that the number of rows represented in L ,:

which are connected by one link to rows not
represented in L, < m

which are connected by two or fewer links to
rows not represented in L, < 2m (6)

which are connected by (¢ — 1) or fewer links
to rows not represented in L, < (¢ — 1)m

where c is defined in (4). If any of these inequalities is
not satisfied, then the definition of bandwidth implies
that » > m for the current permutation, as with the
earlier inequalities (1), (2) and (3). (In the case of ¢ or
fewer links in (6) equality will hold automatically since
g{L,} = p.)

To evaluate the numbers on the left-hand side of the
inequalities (6) we consider the binary pattern L, .
By the definition of bandwidth, L, . ,, — L, must include
all those rows not represented in L, which are connected
by precisely one link to rows represented in L,. Accor-
dingly for each row represented in L,, the chain of con-
nection to a row not represented in L, must involve at
least one non-zero matrix coefficient which connects
rows represented in L, , — L, directly to rows repre-
sented in L,. Hence in the inequalities (6) we may
replace “rows not represented in L,” by “rows repre-
sented in L, ,, — L,”. In general the number of these
latter rows will be much smaller than » — p, which is
the total number of rows not represented in L,, and
considerable gains of speed result from using L, ,, in (6).

As a final comment on the ideas of this section, we
remark that progression through the lexicographical list
can be achieved without the use of I', and by restricting
the application of I'; to p = s 4+ 1. However, progress
on these lines would be prohibitively slow.
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Progression through the permutations

In the preceding section we described the basic criteria
employed by the main routine in Fig. 1, but we did not
discuss how the routine determines its detailed progress
through the lexicographical sequence.

The permutation which defines the starting point for
an application of the main routine can be specified by
means of its first i elements f}, f, . . . f;, on the assump-
tion that the remaining elements are to be taken in their
natural order. For the very first entry to the main
routine with the identity permutation, we would specify
i=1andf; = 1. In the event that the search had been
interrupted at the point where all permutations beginning,
say, 52 . . . had been considered, then the main routine
would next enter the lexicographical list with i= 2,
fi =5, f> = 3, i.e. in the case n = 6, at the permutation
531246. Equally, if the routine has found the first per-
mutation in the sequence for which b < m and search
is to proceed for a smaller bandwidth m*, the initial
permutation will be defined by i =n — 1 and corre-
sponding elements f, f, . . . fa—1, since all previous
permutations in the sequence will have already been
excluded.

Within the routine we have an indicator g, whose
definition is such that the given initial permutation
determines the choice of trial elements f; only as long
as g exceeds zero. Accordingly g is given the initial
value i, and is reduced by 1 each time an element of the
given permutation is not rejected by criteria I'; and T',;
and we reduce g directly to zero as soon as I'y or I',
call for departure from the given permutation.

If for any s, starting with s = 1, ¢{L,}is found to be
less than p for p=s+1, s+2,...n—1 in turn,
then s is increased by 1 to s° and, depending on the
state of the indicator g, the element to be taken as f,
is either that prescribed initially or that corresponding
to the first permutation in the lexicographical list whose
leading elements are fy, f5, ... f;,. For example, in the
case referred to above with n = 6, we might start with
g=1i=2and s =1 to test whether row 5 of the ori-
ginal matrix could be the first row in a permuted matrix
having m < 3. If T, is not satisfied we reduce g to zero
and test with s = 1 whether row 6 can be the first row;
while if I'; is satisfied we reduce g to 1 and test with

= 2 whether rows 5 and 3 of the original matrix can
be rows 1 and 2 respectively in a permuted matrix. If
I', is not satisfied we reduce g to zero and test with s = 2
whether rows 5 and 4 of the original matrix can be
rows 1 and 2 respectively in a permuted matrix; and
thereafter we test permutations beginning 56 (in the
case of failure with I';) or 541 (in the case of success).
However, if T'; is satisfied we reduce g to zero and test
with s = 3 whether rows 5, 3 and 1 can be rows 1, 2 and
3 respectively in a permuted matrix, and thereafter test
permutations beginning 532 or 5312.

In the examples discussed here I'; could not be satisfied
with ¢{L,,,} = s + 1 because we did not consider a
situation for which s > m. However, if we had started
withg=i=4,fi=5/f,=3,3=2,f;=1, and we
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had sought a permutation for which m < 2, additional
possibilities could have arisen. For example, let us
suppose that 5 has been confirmed as a possible first
element for a satisfactory permutation, and that we are
testing 3 as a possible second element: thus we have
g=3, s=2. If the test with p = 3 gives ¢{L3} =3,
then we know that 5 and 3 can be acceptable first and
second elements only in association with a unique third
element corresponding to the non-zero bit in L — M.
If this element is 2, we increase S to 3, reduce g to 2,
make W, non-zero, and test whether 5, 3 and 2 are
acceptable as the first, second and third elements respec-
tively. However, if the bit in L—M corresponds to
row 1 in the original matrix, we cannot accept this row
as the third row in a permuted matrix because permuta-
tions beginning 531 precede those beginning 532 in the
lexicographical sequence: we therefore reduce g to zero
and test with s = 2 whether permutations beginning 54
are acceptable. Yet again, if the bit in L —M corresponds
to row 6, then we must pursue our tests with permuta-
tions starting 536, after reducing g to zero to mark our
departure from the given initial permutation.

The general procedure to which these cases conform
is the following. If, for any s, ¢{L4,} = s + 1, then s
is increased by 1 to s” as before. If we are no longer
required to heed a specified initial permutation, the
binary indicator W, is set non-zero, the non-zero bit in
L — M is added to M, and the routine proceeds directly
to apply criterion I'; to the augmented set of elements
However, if the indicator g exceeds zero
we must confirm that acceptance of the row denoted
by L — M for f, does not imply a regression to a per-
mutation nearer the beginning of the lexicographical list
than that specified initially. If the bit in L — M is
precisely that prescribed for f;, we set W, non-zero,
augment M and apply 'y to fi, fa,...fy; but if an
advance down the list is implied we make g zero for
future reference before so proceeding. On the other
hand, if acceptance of the bit in L — M for f implies
regression to an earlier permutation, then we reduce s’
by 1 to s, abandon the initial permutation, and test the
first following permutation which the indicators W,
W,,... W, show to be feasible. This permutation is
determined as follows, and the same procedure is used
whenever a jump down the lexicographical list is required
because g{L,} exceeds p.

First, 2+~ !z is removed from M to restore the value
at the beginning of the cycle. If Wi is zero, we take as
our new trial f, the row-number corresponding to the
first zero bit in M which follows the bit just rejected,
and apply I'; to the new f,, f5, . . . f;. 1f only non-zero
bits follow the f; rejected, or if W is 1, then we know
that the next permutation in the sequence which should
be considered must have f,_, or an earlier element
changed. Accordingly we reduce s by 1 to s”, and seek
an alternative element to fy- by removing 2" !z from
the current M, and repeating the steps just described as
often as necessary. When s is reduced to zero, we know
that no permutation exists with b < m.
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Special operations used in the algorithm

To simplify the presentation of a concise flow diagram
implementing the above ideas, we now define additional
notation and logical operations which, together with
arithmetical functions, have to be performed on the
binary patterns and integers considered. In the computer
it is, of course, essential that all operations be executed
as speedily as possible.

Small letters are used throughout to denote integers
and/or the stores which hold them, while capital letters
denote binary patterns similarly. We assume that each
binary pattern is (n + 1) bits long, where n is the order
of the matrix, and as before we denote by = the least-
significant bit in every pattern . We denote the (n + 1)th
bit, 2", by B when it is non-zero, and this will be seen
in the flow diagram to serve as an indicator for changing
elements in an unacceptable permutation. Likewise, it
is convenient to combine with each binary integer f an
additional bit to serve as the indicator W which must be
set non-zero if the appropriate test with I'; shows that
q{L.H I} =5+ 1.

In zddition to the logical “or” operation denoted by V/,
we require the logical “and”, denoted by &. Also we
assume that a facility exists for determining g{A}, the
number of non-zero bits in the pattern A. Another
function required is to find the integer r when the
pattern 27!z is given: r can be found as 1 + g(R),
where R = 2"~ !z + ones, thatis, R =2""'7w — .

Given a pattern 4 we need to determine its least-
significant zero bit which is not less than 2"~ 1, that is,
the first gap in 4 which comes not before 2" ~!'7. We
denote the pattern with a non-zero bit corresponding to
the gap by S(4, 2"~ '#); and so the pattern corresponding
to the first gap which follows 2"~ 'z will be S(4, 27m).
In fact, S(4, 2"~ !'m) can be obtained by the operations:

A+2"'7—B
B&(—2"'n)—B
B & (— B)— S(4, 2" 'n).

The patterns D(c, f'), whose non-zero bits indicate the
rows of the matrix which are connected to row f by ¢ or
fewer links, are required only for certain values of ¢ and f.
Accordingly it is economical to work out any pattern
only when it is required in the main routine; but once a
pattern has been obtained it should be stored, together
with a record of the fact that it has been evaluated, in
case it should be required again. Since whenever
D(c, ) is required (¢ > 2), D(c — 1,f) and D(c — 2, f)
will have been computed, we can obtain D(c,f) from
these as in Fig. 5. D(1,f), whose non-zero bits corre-
spond to the non-zero coefficients in row f of the ori-
ginal matrix, must be supplied to the program, of course;
and we define D(0, f) to be D(1,f) & 2/~ '=, that is, it
consists of a single non-zero bit corresponding to the
diagonal coefficient in row f (when this coefficient is
non-zero).

Consideration of Fig. 4 and its analogue for p — 1

D(c-1,t) =D (c-2,1) —=A

Zeros —=B

A =0 7?
A .(—A)——-c
-C —A BvD (c-l,f)—’D (c.t)

BvD(l,r(c)) —B

L/

Fig. 5.—Determination of D (c, f) from D (¢ — 1, f) and
D(c —2,f)

shows that in all circumstances L, satisfies the recurrence

relation
L,=L, VD(,fd),

where d is defined by equations (4). When no integer d
can be found (i.e. for certain values of p when s is less
than m), L, is taken equal to L,,*l

The ﬂow diagram for the main routine is given in
Figs. 6(a) and 6(b). The seven returns from Fig. 6(b) to
Fig. 6(a) are followed in the following circumstances:

I. p does not have a value for which we can apply
I',. Therefore increase p by 1.

II. T, has provided no basis for action. Therefore
increase p by 1 and apply I'; to that case.

III. T, is bound to be satisfied. Therefore do not
apply it but test with I"; for the next value of p.

1V. T, has shown that acceptance of the unique ele-
ment not common to L and M implies regression
to a permutation earlier in the list than that given
initially. Therefore depart from the initial per-
mutation, by seeking change of last element but
two (or earlier still).

V. T, has shown that f, f5, . .. f; cannot be first s
elements in a permutation for which b < m.
Therefore jump down list of permutations to the
next which is worthy of consideration after that
just rejected.

VI. T, has shown that f}, f5, . .
elements, etc. (as in V).

VII. The unique element not common to L and M is
acceptable as an addition to the group of elements
which have not yet been rejected by I'; and T',.

. f, cannot be first s

Concluding remarks

In this final section we discuss the principal short-
comings of the algorithm as revealed by use of the
computer program on practical problems. Our remarks

(Continued on page 271)
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Matrix bandwidth reduction
i —=g L
| —e9s

Zeros—M

) e
2 —F

N 7

5——’-P
| —c¢
s-m —d

Zero ——-Ws

F+M—{M
M —L
M —J

r(F) —1g

N\
p+l —p

p=n?

=n-1?
F;onrdrl‘,rm s=n-|

I No
[q 1L1< P] } Criteria / \Y“"
4

Zero —-g

M-F -M3
W= |24

No

S (M 2F)— F°

F=p3?
No / Yes
s=|—=s
s/=O ?
Yy No
xit & I —F

1. After n—s-1 tests I'; and T', have not rejected f},/5, - - . f;
as the first s elements in a permutation for which b < m.

. Permutation for which b < m has been found.

. Restore original M.

. Do we require a permutation determined by change of
fs—1 or an earlier element ?

5. First gap in M which follows f,.

6. No permutation exists for which b < m.

S W

Fig. 6(a) Flow diagram of main routine
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Matrix bandwidth reduction

PN
b
d+|—d
/d>5?
c+l=c
d- m-d
d =l ?

/|

LvD (c,fg) —L
VD (c+1, 1g)—J

q {Lj=p >
No Yes
q {L} >p? p=s+I|
/' 02 Yes
Zero -k
kel =k S+ I' S
9-I—9g
m Yes gspo?
No3 No
l r (L - W< fs ?
Zeros —B
Yes
J-L —A Ne
——] s—|—s r(L-M)=fg ?
v A=0O> No
s \ W
BI > km lero g
As(-A)—E 4
| Vs
m.__ Bv[L;D(k r(E)]-B L-M—F
L v
[r(L- M) unique]
1. This gives incorrect J for ¢ = 1 because J then is taken to 2. Entry to [',.
be MVDQ,fpvD@2,f;—1) . . . . only, whereas 3. This path is followed only when ¢ > 2.
it should also include D(1,f; + 1), D(1,f; + 2) etc. 4. This loop removes rows in J—L one by one and counts
However, the error is unimportant because J is not used them.
for ¢ = 1: see 3.
Fig. 6(b).—Flow diagram of main routine: criteria I'; and I',
(Continued from page 269) M\ DG, f-m: )V D, fsm2)V - .. VDA, fa)
are divided between comments on the criteria I'; and T',, i
on the organization of the complete program, and on VD —1,f5 )V ... VDe—1,[).
use of the lexicographical ordering.
Ip the first place, I'; and T', both discriminate on L, Therefore, when I'; or I';, rejects those permutations for
which in general, as we have seen in (5), has the form which the first s elements are f, f5, . . . f;, then on the
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Matrix bandwidth reduction

basis of the same information we should also reject every
permutation which can be obtained by reordering
Soem+ts Sfs—mioz---fs among themselves, and by
reordering f;., . ..f,. Unfortunately the algorithm as
it stands will labour through a number of these
m!/ (s — d)!(m — s + d)! unacceptable permutations,
regardless.

At the same time we have observed that, for the large
matrices we have handled, the tests with I'; and I'; have
been less useful for values of p near n — 1 than for values
near s. Thus considerable alteration of the first s ele-
ments accompanied tests with the smaller values of p,
while T'; and T', were satisfied without great difficulty
for later values. There seems hope, therefore, that time
might be saved by omitting the tests for large values of
p, but unfortunately it is not clear how to choose the
final value of p appropriate to any particular matrix.

Regarding the organization of the complete program,
we stated when introducing Fig. 1 that we have obtained
satisfactory results for small matrices by reducing m in
steps of one until the minimum bandwidth was deter-
mined. (In the case of large matrices m was reduced
until the time required to achieve a further reduction
became exorbitant.) A more efficient procedure, ano-
malies apart, would be to approach the minimum band-
width by a process of bisection as follows. We use two
parameters m, and m, with initial values 1 and n — 1,
respectively. We take our first guess for m to be the
integer halfway between m; and m, (or the larger of
two middle integers) and enter the lexicographical list
with the identity permutation. If the main routine finds
a permutation for which b < m we continue the exercise
with m, = m; while if no satisfactory permutation is
found we continue with m; = m. In place of Fig. 1
we proceed as in Fig. 7.

Nonetheless, unqualified application of even this
program is unlikely to make the very best use of the
main routine. For let us suppose we are examining a
large matrix, or one for which the search through the
permutations takes a prohibitively long time when m is
near the minimum. When the program selects an m in
this range, it will not improve upon its previous reduction
of the halfbandwidth to m,; whereas if the routine
operated with m = m, — a, where a is some small
integer, it might find a permutation for which b < m,—a
in a reasonable time. This cycle could then be repeated.

Lastly, we return to the prime strategy underlying the

Take identity permutation
| —=m,

n=-|—=m

2

S
{Integrol part of Y (m + m+ D} —m

m=my, ?

/
No

Main routine
starting with last
stored perm

<No perm) / &m found)
foun/

Store perm
m——m,

Last stored
perm gives

minimum b m—m

i |

Fig. 7.—Improved use of the main routine

2

main routine, namely, that a search is made through all
the possible permutations in a fixed order, without
regard to the structure of the linear graph of the matrix.
When the matrix is such that the minimum bandwidth
is determined by the structure of a small sub-graph, the
routine would waste a lot of time testing different per-
mutations which involve reordering the rows and
columns not in the corresponding submatrix. This
means that, in general, for even quite small matrices of
this type the routine would be useless. To overcome
this defect further work is in progress on a method of
avoiding the use of a fixed sequence of permutations,
by having the configuration of the matrix decide which
permutation shall be considered at any stage of the
reduction.
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